Math, asked by navyaagarwal30, 8 hours ago

cosec⁶ theta-cot⁶ theta =1 + 3 cosec² theta. cot²theta

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Consider, LHS

\rm :\longmapsto\: {cosec}^{6}\theta  -  {cot}^{6}\theta

can be rewritten as

\rm \:  =  \:  {( {cosec}^{2} \theta )}^{3}  -  {( {cot}^{2} \theta )}^{3}

We know,

\boxed{\tt{  {x}^{3} -  {y}^{3} =  {(x - y)}^{3} + 3xy(x - y)}}

So, using this identity, we get

\rm \:  =  \:  {( {cosec}^{2} \theta  -  {cot}^{2} \theta )}^{3} + 3 {cosec}^{2}\theta  {cot}^{2}\theta ( {cosec}^{2}\theta  -  {cot}^{2}\theta )

We know,

\boxed{\tt{  {cosec}^{2}x -  {cot}^{2}x = 1 \: }}

So, using this identity, we get

\rm \:  =  \:  {(1)}^{3} + 3 {cosec}^{2}\theta  {cot}^{2}\theta (1)

\rm \:  =  \:  1 + 3 {cosec}^{2}\theta  {cot}^{2}\theta

Hence,

\rm\implies \: \boxed{\tt{ {cosec}^{6}\theta  -  {cot}^{6}\theta  = 3 {cosec}^{2}\theta  {cot}^{2}\theta  }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Answered by HarshitJaiswal2534
0

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Consider, LHS

\rm :\longmapsto\: {cosec}^{6}\theta  -  {cot}^{6}\theta

can be rewritten as

\rm \:  =  \:  {( {cosec}^{2} \theta )}^{3}  -  {( {cot}^{2} \theta )}^{3}

We know,

\boxed{\tt{  {x}^{3} -  {y}^{3} =  {(x - y)}^{3} + 3xy(x - y)}}

So, using this identity, we get

\rm \:  =  \:  {( {cosec}^{2} \theta  -  {cot}^{2} \theta )}^{3} + 3 {cosec}^{2}\theta  {cot}^{2}\theta ( {cosec}^{2}\theta  -  {cot}^{2}\theta )

We know,

\boxed{\tt{  {cosec}^{2}x -  {cot}^{2}x = 1 \: }}

So, using this identity, we get

\rm \:  =  \:  {(1)}^{3} + 3 {cosec}^{2}\theta  {cot}^{2}\theta (1)

\rm \:  =  \:  1 + 3 {cosec}^{2}\theta  {cot}^{2}\theta

Hence,

\rm\implies \: \boxed{\tt{ {cosec}^{6}\theta  -  {cot}^{6}\theta  = 3 {cosec}^{2}\theta  {cot}^{2}\theta  }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions