Math, asked by jaysrinaveen8633, 1 year ago

Cosec6A-cot6A=3cot2Acosec2A+1

Answers

Answered by AnkitaSahni
7

Proved

•LHS

•cosec^6A-cot^6A

•(cosec²A)³- (cot²A)³

•Using a³- b³ = ( a - b )( a² + b² + ab )

•(cosec²A-cot²A){(cosec²A)²+

(cot²A)²+cosec²Acot²A}

____[ By Using, cosec²A= 1+cot²A

cosec²A-cot²A =1]

•{(cosec²A)²+(cot²A)²+cosec²Acot²A}

•Now adding and subtracting

2cosec²Acot²A

•(cosec²A)²+(cot²A)²-2cosec²Acot²A + 3cosec²Acot²A

•{(cosec²A-cot²A)² + 3cosec²Acot²A}

•1 +3cosec²Acot²A

•RHS

Answered by jitumahi435
7

\csc^6A-\cot^6A=3\cot^2A\csc^2A+1, proved.

Step-by-step explanation:

To prove that:

\csc^6A-\cot^6A=3\cot^2A\csc^2A+1

L.H.S. = \csc^6A-\cot^6A

= (\csc^2A)^3-(\cot^2A)^3

Using the algebraic identity,

(a-b)^{3} =a^3-b^3-3ab(a-b)

a^3-b^3=(a-b)^{3} +3ab(a-b)

= (\csc^2A-\cot^2A)^3+3\csc^2A\cot^2A(\csc^2A-\cot^2A)

Using the trigonometric identity,

\csc^2\theta-\cot^2\theta = 1

= (1)^3+3\csc^2A\cot^2A(1)

= 1 + 3\csc^2A\cot^2A

= 3\cot^2A\csc^2A + 1

= R.H.S., proved.

Thus, \csc^6A-\cot^6A=3\cot^2A\csc^2A+1, proved.

Similar questions