Math, asked by shyam130, 1 year ago

cosec6@-cot6@=1+3cosec2@cot2@

Answers

Answered by Narendra931
10
more detail contect 8890085771
Attachments:

shyam130: tnx bhi
shagandeep: thx
Answered by codiepienagoya
4

Proving L.H.S=R.H.S

Step-by-step explanation:

Given that:

(cosec @)^6-(cot @)^6=1+3(cosec @)^2(cot @)^2\\

Solving\  L.H.S\ part:\\

(cosec \ @)^6-(cot \ @)^6\\

formula: \  (a)^3-(b)^3= (a-b)((a)^2+ab+(b)^2)\\

((cosec \ @)^2)^3-((cot \ @)^2)^3\\=

((cosec \ @)^2-(cot \ @)^2)((cosec \ @^2)^2+(cot \ @^2)^2+(cosec \ @)^2\cdot (cot \ @)^2)\\

\therefore cosec^2 \theta  -cot^2 \theta \ = \ 1

(1).((cosec \ @^2)^2+(cot \ @^2)^2+(cosec \ @)^2\cdot (cot \ @)^2)\\

formula:\ (a-b)^2=(a)^2+(b)^2-2 \cdot a \cdot b\\

\therefore (a)^2+(b)^2= (a-b)^2+2 \cdot a \cdot b\\

(cosec \ @^2)^2+(cot \ @^2)^2=(((cosec \ @^2)-(cot \ @^2))^2+2(cosec \ @)^2\cdot (cot \ @)^2+)\\

(cosec \ @^2)^2+(cot \ @^2)^2=((1)^2+3(cosec \ @)^2\cdot (cot \ @)^2)\\

((1)^2+3(cosec \ @)^2(cot \ @)^2)

(1+3cosec^2 \ @.cot^2 \ @)

L.H.S=R.H.S

Learn more:

  • Proving: https://brainly.in/question/5438403
  • Proving: https://brainly.in/question/11812029
Similar questions