Math, asked by khushigupta1025, 1 year ago

(cosecA -3sinA)(secA-cosA)=1/tanA+cotA


NeelamG: i hope it will help u..
NeelamG: if it help u then mark as brainlist
khushigupta1025: ok ty
NeelamG: mark as brainlist
NeelamG: wlcm
NeelamG: plz
NeelamG: i sent pic
khushigupta1025: yes
khushigupta1025: nd
khushigupta1025: send

Answers

Answered by NeelamG
4

hii friend
there is mistake in statement
there must be cosecA - sinA instead of
cosecA-3sinA
then it is proved
so i hope it help u.......
Attachments:
Answered by aquialaska
0

Answer:

To  Prove: ( cosec A - sin A )( sec A - cos A ) = 1/( tan A + cot A )

Consider,

LHS = ( cosec A - sin A )( sec A - cos A )

       = ( 1/sin A - sin A )( 1/cos A - cos A )

       =(\frac{1-sin^2\,A}{sin\,A})(\frac{1-cos^2\,A}{cos\,A})

       =(\frac{cos^2\,A}{sin\,A})(\frac{sin^2\,A}{cos\,A})

       =cos\,A\:\:sin\,A

RHS = \frac{1}{tan\,A+cot\,A}

       =\frac{1}{\frac{sin\,A}{cos\,A}+\frac{cos\,A}{sin\,A}}

       =\frac{1}{\frac{sin^2\,A+cos^\,A}{cos\,A\:\:sin\,A}}

       =\frac{cos\,A\:\:sin\,A}{sin^2\,A+cos^2\,A}

       =cos\,A\:\:sin\,A

LHS = RHS

Hence Proved.

Similar questions