Math, asked by dronadulatejendra926, 1 year ago

CosecA=4x+1/16x then cosecA+cotA

Answers

Answered by MaheswariS
9

Answer:

cosecA+cotA=8x

Step-by-step explanation:

Concept used:

\bold{cosec^2A-cot^2A=1}

\bold{(a+b)^2=a^2+b^2+2ab}

\bold{(a-b)^2=a^2+b^2-2ab}

Given:

cosecA=4x+\frac{1}{16x}......(1)

squaring on both sides

cosec^2A=(4x+\frac{1}{16x})^2

\implies\:cosec^2A=16x^2+\frac{1}{256x^2}+2*4x*\frac{1}{16x}

\implies\:cosec^2A=16x^2+\frac{1}{256x^2}+\frac{1}{2}

\implies\:cosec^2A-1=16x^2+\frac{1}{256x^2}+\frac{1}{2}-1

\implies\:cosec^2A-1=16x^2+\frac{1}{256x^2}-\frac{1}{2}

\implies\:cosec^2A-1=(4x-\frac{1}{16x})^2

\implies\:cot^2A=(4x-\frac{1}{16x})^2

Taking square root on both sides

\implies\:cotA=4x-\frac{1}{16x}........(2)

Adding (1) and (2)

cosecA+cotA=4x+\frac{1}{16x}+4x-\frac{1}{16x}

\implies\:cosecA+cotA=8x

Similar questions