cosecA + cotA= K then prove that cos A = k2-1/K2+1
Answers
Answered by
5
1/sinA+cosA/sinA=k
1+cosA/sinA=k
1+cos^2A/sin^2A= k^2
componendo dividendo
1+cos^2A-sin^2A/sin^2A+sin^2A= k^2-1/k^2+1
2cos^2A/2sun^2A=k2-1/k2+1
cot2A
1+cosA/sinA=k
1+cos^2A/sin^2A= k^2
componendo dividendo
1+cos^2A-sin^2A/sin^2A+sin^2A= k^2-1/k^2+1
2cos^2A/2sun^2A=k2-1/k2+1
cot2A
Answered by
8
, proved.
Step-by-step explanation:
We have,
= K
To prove that, .
∴ = K
Using the trigonometric identity,
= and
=
= K
⇒ = K
R.H.S. =
Put k = , we get
=
=
Using the algebraic identity,
= + 2ab +
=
=
Using the trigonometric identity,
= 1
⇒ = 1 -
=
=
=
=
= R.H.S. , proved.
Thus, , proved.
Similar questions