Math, asked by billaPrashanth1, 1 year ago

cosecA + cotA= K then prove that cos A = k2-1/K2+1

Answers

Answered by ddeva27
5
1/sinA+cosA/sinA=k
1+cosA/sinA=k
1+cos^2A/sin^2A= k^2
componendo dividendo

1+cos^2A-sin^2A/sin^2A+sin^2A= k^2-1/k^2+1
2cos^2A/2sun^2A=k2-1/k2+1

cot2A

Answered by jitumahi435
8

\cos A=\dfrac{k^2-1}{k^2+1}, proved.

Step-by-step explanation:

We have,

\csc A +\cot A = K

To prove that, \cos A=\dfrac{k^2-1}{k^2+1}.

\csc A +\cot A = K

Using the trigonometric identity,

\csc A = \dfrac{1}{\sin A} and

\cot A = \dfrac{\cos A}{\sin A}

\dfrac{1}{\sin A} +\dfrac{\cos A}{\sin A} = K

\dfrac{1+\cos A}{\sin A} = K

R.H.S. = \dfrac{k^2-1}{k^2+1}

Put k =  \dfrac{1+\cos A}{\sin A}, we get

= \dfrac{(\dfrac{1+\cos A}{\sin A})^2-1}{(\dfrac{1+\cos A}{\sin A})^2+1}

= \dfrac{(1+\cos A)^2-\sin^2 A}{(1+\cos A)^2+\sin^2 A}

Using the algebraic identity,

(a+b)^{2} = a^{2} + 2ab + b^{2}

= \dfrac{1+\cos^2 A+2\cos A-\sin^2 A}{1+\cos^2 A+2\cos A+\sin^2 A}

= \dfrac{1-\sin^2 A+\cos^2 A+2\cos A}{1+\sin^2 A+\cos^2 A+2\cos A}

Using the trigonometric identity,

\sin^2 A+\cos^2 A= 1

\cos^2 A = 1 - \sin^2 A

= \dfrac{\cos^2 A+\cos^2 A+2\cos A}{1+1+2\cos A}

= \dfrac{2\cos^2 A+2\cos A}{2+2\cos A}

= \dfrac{2\cos A(1+\cos A)}{2(1+\cos A)}

= \cos A

= R.H.S. , proved.

Thus, \cos A=\dfrac{k^2-1}{k^2+1}, proved.

Similar questions