Math, asked by rithikarajesh9793, 3 months ago

CosecA+secA=cosecB+secBProves that tana+b/2=cotA cotB

Answers

Answered by mathdude500
1

\large\underline{\sf{Given- }}

\rm :\longmapsto\:cosecA + secA = cosecB + secB

\large\underline{\sf{To\:prove - }}

\rm :\longmapsto\:tan\bigg(\dfrac{A + B}{2} \bigg) = cotA \: cotB

\begin{gathered}\Large{\bold{{\underline{Formula \: Used - }}}}  \end{gathered}

\underbrace{\boxed{ \tt{ \:cosecx =  \frac{1}{sinx} }}}

\underbrace{\boxed{ \tt{ \:secx =  \frac{1}{cosx} }}}

\underbrace{\boxed{ \tt{ cotx\: =  \frac{cosx}{sinx}  }}}

\underbrace{\boxed{ \tt{ tanx\: =  \frac{sinx}{cosx}  }}}

\underbrace{\boxed{ \tt{cosx - cosy = 2sin\bigg(\dfrac{y + x}{2} \bigg)sin\bigg(\dfrac{y - x}{2} \bigg) \: }}}

\underbrace{\boxed{ \tt{sinx - siny = 2cos\bigg(\dfrac{y + x}{2} \bigg)sin\bigg(\dfrac{x - y}{2} \bigg) \: }}}

 \purple{\large\underline{\bf{Solution-}}}

Given that

\rm :\longmapsto\:cosecA + secA = cosecB + secB

On transposition, we get

\rm :\longmapsto\:cosecA  -  cosecB = secB  -  secA

\rm :\longmapsto\:\dfrac{1}{sinA}  - \dfrac{1}{sinB}  = \dfrac{1}{cosB}  - \dfrac{1}{cosA}

\rm :\longmapsto\:\dfrac{sinB - sinA}{sinAsinB}  = \dfrac{cosA - cosB}{cosAcosB}

On applying alternendo, we get

\rm :\longmapsto\:\dfrac{cosAcosB}{sinAsinB} =  \dfrac{cosA - cosB}{sinB - sinA}

\rm :\longmapsto\:cotA \: cotB = \dfrac{2sin\bigg(\dfrac{A + B}{2} \bigg)sin\bigg(\dfrac{B - A}{2} \bigg)}{2cos\bigg(\dfrac{A + B}{2} \bigg)sin\bigg(\dfrac{B - A}{2} \bigg)}

\rm :\longmapsto\:cotA \: cotB = tan \bigg(\dfrac{A + B}{2} \bigg)

Hence, Proved

Additional Information :-

\underbrace{\boxed{ \tt{cosx  +  cosy = 2cos\bigg(\dfrac{x + y}{2} \bigg)cos\bigg(\dfrac{x - y}{2} \bigg) \: }}}

\underbrace{\boxed{ \tt{sinx  +  siny = 2sin\bigg(\dfrac{x + y}{2} \bigg)cos\bigg(\dfrac{x - y}{2} \bigg) \: }}}

\underbrace{\boxed{ \tt{2sinxcosy =  \: sin(x + y) + sin(x - y)}}}

\underbrace{\boxed{ \tt{2cosxcosy =  \: cos(x + y) + cos(x - y)}}}

\underbrace{\boxed{ \tt{ 2sinxsiny\:  =  \: cos(x - y) - cos(x + y)}}}

Similar questions