( cosecA -sin A ) ( sec A - cos A ) = 1/ tan A + cot A
Answers
Answered by
15
Solution is in attachment ..........
Attachments:
Answered by
11
Step-by-step explanation:
L.H.S
= ( cosec A - sin A ) (sec A - cos A )
But, we know that,
- cosec A = 1/sin A
- sec A = 1/cos A
Therefore, we will get,
= (1/sinA - sinA)(1/cosA - cosA)
= (1- sin^2A)/sinA (1-cos^2A)/cosA
= (1-sin^2A)(1-cos^2A)/(sinAcosA)
= (1 - cos^2A - sin^2A + cos^2A sin^2A)/(sinAcosA)
= {1-(sin^2A+cos^2A)+ sin^2A cos^2A}/(sinAcosA)
= (1-1+sin^2Acos^2A)/(sinAcosA)
= (sin^2A cos^2A)/(sinA cosA)
= sinA cosA
= sinA cosA/1
= (sinA cosA) /(sin^2 A + cos^2 A)
= 1/(sin^2A+cos^2A)/(sinA cosA)
= 1/{(sin^2A/sinAcosA)+(cos^2A/sinAcosA)}
= 1/{(sinA/cosA)+(cosA/sinA)}
= 1/(tanA + cotA)
= R.H.S
Thus, L.H.S = R.H.S
Hence, Proved.
Similar questions
Science,
5 months ago
Computer Science,
5 months ago
English,
5 months ago
Computer Science,
10 months ago
Social Sciences,
10 months ago