(cosecA-sinA ) (secA - cosA ) =1÷ tanA + cot A
Answers
Answered by
22
aheya friends .☺☺..
here is ur answer. .
===============
from lhs
(cosecA-sicA)(secA-cosA)
=>(1/sinA-sinA)(1/cosA-cosA)
=>(1-sin^2 A/sinA)(1-cos^2A/cosA)
=>(cos^2A/sinA)(sin^2A/cosA)
=>(cos^2A*sin^2A/sinA*cosA)
=>cosA*sinA
now from Rhs
1/tanA+cotA
=>1
----------------------------
sinA/cosA+cosA/sinA
=>1/sin^2A+cos^2A/cosA*sinA
=>cosA*sinA/sin^2A+cos^2A【sin^2A+cos^2B=1】
=>cosA*sinA ...
>Rhs =lhs .
prooved ..
============
hope it help. .
☺☺@rajukumar
here is ur answer. .
===============
from lhs
(cosecA-sicA)(secA-cosA)
=>(1/sinA-sinA)(1/cosA-cosA)
=>(1-sin^2 A/sinA)(1-cos^2A/cosA)
=>(cos^2A/sinA)(sin^2A/cosA)
=>(cos^2A*sin^2A/sinA*cosA)
=>cosA*sinA
now from Rhs
1/tanA+cotA
=>1
----------------------------
sinA/cosA+cosA/sinA
=>1/sin^2A+cos^2A/cosA*sinA
=>cosA*sinA/sin^2A+cos^2A【sin^2A+cos^2B=1】
=>cosA*sinA ...
>Rhs =lhs .
prooved ..
============
hope it help. .
☺☺@rajukumar
Answered by
15
Given,
L.H.S.
~~~~~
= ( cosec A - sin A ) ( Sec A - cos A )
= ( 1/ Sin A - SinA ) ( 1/cos A - cos A )
= ( 1 - sin^2 A / Sin A ) ( 1 - cos^2 A / CosA )
= ( cos^2 A / Sin A ) ( sin^2 A / CosA )
= cos A × sin A....(1)
R.H.S
~~~~~
= 1 / tanA + cotA
= 1/tanA + cotA
= 1/(sinA / cosA) + (cos A / sinA)
= 1/(sin^2A + cos^2A)/(cosA×sinA)
= 1/1/cos A×sinA
= cosA×sin A......(2)
From (1) and (2) we have,
L.H.S = R.H.S
( Hence, proved )
Hope it helps !!
L.H.S.
~~~~~
= ( cosec A - sin A ) ( Sec A - cos A )
= ( 1/ Sin A - SinA ) ( 1/cos A - cos A )
= ( 1 - sin^2 A / Sin A ) ( 1 - cos^2 A / CosA )
= ( cos^2 A / Sin A ) ( sin^2 A / CosA )
= cos A × sin A....(1)
R.H.S
~~~~~
= 1 / tanA + cotA
= 1/tanA + cotA
= 1/(sinA / cosA) + (cos A / sinA)
= 1/(sin^2A + cos^2A)/(cosA×sinA)
= 1/1/cos A×sinA
= cosA×sin A......(2)
From (1) and (2) we have,
L.H.S = R.H.S
( Hence, proved )
Hope it helps !!
Róunak:
thx
Similar questions