Math, asked by anita3282, 7 months ago

(cosecA-sinA)(secA-cosA)=1/tanA+cotA​

Answers

Answered by Anonymous
7

Answer:

( \cosec  a -\sin  a )(\sec a-\cos a) =  \frac{1}{ \tan a \:  + \cot a}

Explanation:

Given:

( \cosec  a -\sin  a )(\sec a-\cos a) =  \frac{1}{ \tan a \:  + \cot a}

To Prove:

LHS=RHS

LHS

Substituting \: \:  cosec \: a \: \:  as \:  \:  \frac{1}{sin \: a}   \: \: and  \: \: sec \: a \: \:  as \: \:   \frac{1}{cos \: a}

( \frac{1}{sin \: a}  - sin \: a)( \frac{1}{cos \: a}  - cos \: a)

Taking LCM, we get:

( \frac{1 -  {sin}^{2}a }{sin \: a} )( \frac{1 -  {cos}^{2}a }{cos \: a} )

We \: know \: that \:1- {sin}^{2} a \:is  \:  {cos}^{2}  a \:  and \:  1- {cos}^{2} a \:  is \:  {sin}^{2}  a

( \frac{{cos}^{2} a}{sin \: a})(  \frac{ {sin}^{2}a }{cos \: a} )

After performing calculation, we get:

cos \: a \times sin \: a

RHS

Substituting \: \: tan \: a \: \: as \: \:  \frac{sin \: a}{cos \: a} \: \:  and \: \:cot \: a  \: \:   as \:  \:  \frac{cos \: a}{sin \: a}

 \frac{1}{ \frac{sin \: a}{cos \: a} +  \frac{cos \: a}{sin \: a} }

Taking LCM, we get:

 \frac{1}{ \frac{sin \: a \times sin \: a  \: + \: cos \: a \times cos \: a }{cos \: a \: sin \: a} }

 \frac{1}{  \frac{ {sin}^{2} \: a +  {cos}^{2}  \: a}{cos \: a \: sin \: a} }

We know that:

 {sin}^{2}  \: a \:  +  \:  {cos}^{2}  \: a \:  =  \: 1

 \frac{1}{\frac{1}{cos \: a \: sin \: a} }

sin \: a \: cos \: a

 \therefore \: LHS=RHS

Hence \: \:   Proved

Additional Information:

 \odot \:  \: While \: doing \: proving  \: questions \: ,

we \: can \: use \: trigonometric  \: identities

and\:trigonometric\:ratios\:to\:prove.

Trigonometric Identities

 {sin}^{2} a +  {cos}^{2} a = 1

 {sec}^{2} a -  {tan}^{2} a = 1

 {cosec}^{2} a  -  {cot}^{2} a = 1

Trigonometric Ratios

sin \: a =  \frac{1}{cosec \: a}

cos \: a =  \frac{1}{sec \: a}

tan \: a =  \frac{1}{cot \: a}

cot \: a =  \frac{1}{tan \: a}

sec \: a =  \frac{1}{cos \: a}

cosec \: a =  \frac{1}{sin \: a}

 \odot \:  \: In \: some \: questions, \: the \: RHS \: is

already  \: solved  \: and  \: we  \: have

to  \: just  \: solve  \: and \:  prove \:  LHS

to \:  be \:  equal \:  to  \: RHS.

 \odot \:  \: But  \: in  \: some \:  questions  \: like

this  \: one, \:  RHS \:  is  \: not  \: solved

and \:  we \:  have \:  to \:  solve  \: both

LHS  \: and  \: RHS \:  to \:  prove \:  their

equality.

Similar questions