(CosecA-sinA)(secA-cosA)
Answers
Answered by
3
Hi there !!
(CosecA-sinA)(secA-cosA)
=(I/sinA-sinA)(1/cosA-cosA)
=(1-sin²A/sinA)(1-cos²A/cosA)
=cos²A/sinA ×sin²A/cos {1-sin²A=cos²A and 1-cos²A=sin²A}
=cosA × sinA
Thankyou :)
TANU81:
:)
Answered by
4
Solution:
(CosecA-sinA)(secA-cosA)
☞( 1/Sin A - Sin A) ( 1/Cos A - Cos A )
☞( 1 - Sin²A/Sin A ) ( 1-Cos²A/Cos A )
☞( Cos²A/Sin A ) ( Sin²A/ Cos A)
☞ Cos²A/Sin A × Sin²A/ Cos A
☞ Cos A × Sin A
☞ Cos A . Sin A
Trigonometry Identities Used:
☞ Sin²A + Cos²A = 1
☞ Sin²A = 1 - Cos²A
☞ Cos²A = 1 - Sin²A
Similar questions
Math,
1 year ago