Math, asked by omii91, 9 months ago

√coseco-1/cosec +1= 1/seco+tano​

Answers

Answered by Anonymous
9

Solution :-

 \sf \sqrt{ \dfrac{cosec \theta - 1}{cosec \theta + 1} }  =  \dfrac{1}{sec \theta + tan \theta}

Consider LHS

 \sf \sqrt{ \dfrac{cosec \theta - 1}{cosec \theta + 1} }

 \sf =  \sqrt{ \dfrac{ \dfrac{1}{sin \theta}  - 1}{ \dfrac{1}{sin \theta} + 1} }

 \sf =  \sqrt{ \dfrac{ \dfrac{1 - sin \theta}{sin \theta}}{ \dfrac{1 + sin \theta}{sin \theta} } }

 \sf =  \sqrt{ \dfrac{ 1 - sin \theta}{1 + sin \theta}}

On rationalising the denominator we get,

 \sf =  \sqrt{ \dfrac{ 1 - sin \theta}{1 + sin \theta} \times  \dfrac{1+ sin \theta}{1+ sin \theta} }

\sf =  \sqrt{ \dfrac{(1-sin \theta)(1+sin \theta)}{( 1  + sin \theta)^2} }

\sf =  \sqrt{ \dfrac{1^2 - sin^2 \theta}{(1 +  sin \theta)^2}}

[ Because (x + y)(x - y) = x² - y² ]

\sf =  \sqrt{ \dfrac{1 - sin^{2}  \theta}{(1 + sin \theta)^2 }}

\sf =  \sqrt{ \dfrac{cos^2 \theta}{(1 + sin \theta)^{2} } }

[ Because 1 - sin²θ = cos² θ ]

\sf =  \sqrt{ \bigg( \dfrac{cos \theta}{1 + sin \theta } \bigg)^{2}  }

\sf =  \dfrac{cos \theta}{1 +  sin \theta }

Divide both numerator and denominator with cos θ

\sf = \dfrac{ \dfrac{cos \theta}{cos \theta} }{ \dfrac{1 + sin \theta}{cos \theta } }

\sf = \dfrac{1}{ \dfrac{1}{cos \theta } + \dfrac{sin \theta}{cos \theta} }

\sf = \dfrac{1}{ sec \theta+ tan \theta}

[ Because secθ = 1/cosθ and tanθ = sinθ/cosθ ]

= RHS

Hence proved.

Answered by Nereida
22

\huge\star{\red{\underline{\mathfrak{Answer :-}}}}

Let us take the angle here as alpha instead of theta.

 \sqrt{ \dfrac{ \csc( \alpha )  -  1 }{ \csc( \alpha ) + 1 } }  =  \dfrac{1}{ \sec( \alpha ) +  \tan( \alpha )  }

Let's prove this...!!!

LHS :-

 \leadsto {\sqrt{ \dfrac{  \frac{1}{ \sin( \alpha )  }  - 1  }{ \dfrac{1}{ \sin( \alpha )  }   + 1} }}

( cosec theta = 1/(Sin theta) )

\leadsto { \sqrt \dfrac{ \dfrac{1 -  \sin( \alpha ) }{ \sin( \alpha ) } }{ \dfrac{1 +  \sin( \alpha ) }{ \sin( \alpha ) } }}

\leadsto{ \sqrt{ \dfrac{1 -  \sin( \alpha ) }{ \sin( \alpha )  } \times  \dfrac{ \sin( \alpha ) }{1  +  \sin( \alpha ) } } }

\leadsto  { \sqrt{ \dfrac{1 -  \sin( \alpha ) }{1 +  \sin( \alpha ) } }}

Rationalizing the result :-

\leadsto { \sqrt{ \dfrac{1 -  \sin( \alpha ) }{1 +  \sin( \alpha ) } }  \times  \sqrt{ \dfrac{1 -  \sin( \alpha ) }{1 -  \sin( \alpha ) }} }

 \leadsto  {\sqrt{  \dfrac{ {(1 -  \sin( \alpha )) }^{2} }{ {1}^{2} -  { \sin }^{2}  \alpha  } }}

( cos^2 theta = 1- sin^2 theta )

\leadsto  { \sqrt{ \dfrac{ { \cos }^{2} \alpha  }{ {(1  -  \sin( \alpha )) }^{2} }} }

\leadsto  { \dfrac{ \cos( \alpha ) }{1 -  \sin( \alpha ) }}

Dividing both numerator and denominator by cos alpha :-

\leadsto  { \dfrac{\dfrac {\cos(\alpha)}{\cos (\alpha)}}{\dfrac { 1+ \sin (\alpha)}{\cos (\alpha)}}}

\leadsto  { \dfrac {1}{\dfrac {1+ \sin (\alpha)}{\cos(\alpha)}}}

\leadsto  { \dfrac {1}{\dfrac  {1}{\cos(\alpha)} + \dfrac {\sin(\alpha)}{\cos (\alpha)}}}

( 1/(cos theta) = sec theta )

( sin theta / cos theta = tan theta )

\leadsto {\dfrac{1}{ \sec( \alpha ) +  \tan( \alpha )  }}

\therefore {Hence\:proved}

Similar questions