Math, asked by Manjirihamjade, 5 months ago

(Coseco+1) (coseco -1)=1/tan^2theta proove. ​

Answers

Answered by chauhanaaditya43
5

Answer:

thanks thanks thanks thanks thanks thanks thanks thanks

Attachments:
Answered by Seafairy
145

Given :

(\csc +1)(\csc-1)=\frac{1}{\tan^2}

To Prove :

\text{RHS = LHS}

Identity Used :

\csc^2\theta-1=\cot^2\theta

Solution :

\implies( \csc^2 \theta+1)(\csc^2-1)

\implies \csc^2\theta-\csc\theta+csc\theta -1

\implies \csc^2\theta-1

\implies \cot^2\theta \:\:(\because \csc^2\theta-1=\cot^2\theta)

\implies \frac{1}{\tan^2\theta} \:\:(\because \:\:\tan \:\:and\:\:\cot\:\: \text{are inverse each other}

Hence Proved.

______________________________________

Some More Identities :

\sin^2 x+ \cos^2 x=1

\tan^2x+1=\sec^2x

\cot^2x+1=\csc^2

Similar questions