(cosecQ-sinQ)(secQ-cosQ)(tanQ-cotQ)=1
Answers
Answered by
2
We have to prove that, (cosecQ - sinQ)(secQ - cosQ)(tanQ + cotQ) = 1
Proof : LHS = (cosecQ - sinQ)(secQ - cosQ)(tanQ + cotQ)
we know,
cosecQ = 1/sinQ
so, (cosecQ - sinQ) = (1/sinQ - sinQ)
= (1 - sin²Q)/sinQ
We also know from trigonometric identities,
sin²Q + cos²Q = 1 ......(1)
So, 1 - sin²Q = cos²Q
so, (1 - sin²Q)/sinQ = cos²Q/sinQ .....(2)
similarly,
we know,
secQ = 1/cosQ
So, (secQ - cosQ) = (1 - cos²Q)/cosQ
= sin²Q/cosQ......(3) [ from eq (1)]
now tanQ = sinQ/cosQ and cotQ = cosQ/sinQ
(tanQ + cotQ) = (sinQ/cosQ + cosQ/sinQ)
= (Sin²Q + cos²Q)/sinQ . cosQ
= 1/sinQ cosQ.....(4) [ from eq (1)]
Now,
Putting equation (2) ,(3) and (4) in LHS
We get,
LHS = cos²Q/sinQ × sin²Q/cosQ × 1/sinQ cosQ
= sinQ cosQ × 1/sinQ cosQ
= 1 = RHS
Hence proved
Similar questions
English,
6 months ago
Math,
6 months ago
Social Sciences,
1 year ago
Math,
1 year ago
Chemistry,
1 year ago