Math, asked by zzzxxx7, 8 months ago

(cosectheta - cottheta)^2 = 1-costheta / 1+ costheta​

Answers

Answered by sonisiddharth751
5

Question

 \sf \:  {(cosec  \theta - cot \theta)}^{2}  =  \frac{1 - cos \theta}{ 1 + cos \theta}  \\  \\  \\

Formula used :

➊ \:  \:  \sf \: cosec \theta =  \frac{1}{sin \theta}  \\  \\  ➋ \:  \: \sf \:  cot \theta =  \frac{cos \theta}{sin \theta}  \\  \\  \\

Solution :

taking LHS, (cosecθ − cotθ)²

 \sf \: ➟ \:  \:  { \bigg(\frac{1}{sinθ}    -  \frac{cosθ}{sinθ}\bigg )}^{2}   \\  \\  \bf \: taking \: LCM \\  \\  \sf \: ➟ \:   \:   { \bigg (\frac{1 - cosθ}{sinθ}  \bigg)}^{2}  \\  \\ ➟ \:  \: \sf \:  \frac{ {(1 -cosθ) }^{2} }{ {(sinθ)}^{2} }  \\  \\ ➟ \sf \:   \: using \:  \:( 1 -  {cosθ}^{2}  =  {sinθ}^{2} ) \\  \\ ➟ \:  \sf \:   \frac{(1 -  {cosθ})^{2} }{1 -  {cosθ}^{2} }  \\  \\ ➟ \:  \sf \: \frac{(1 -  {cosθ})^{2} }{ {(1)}^{2}  -  {(cosθ)}^{2} }   \\  \\ ➟ \:  \sf \: \:   \frac{ {(1 - cosθ)}^{2} }{(1 + cosθ)(1 -cosθ) }  \\  \\ ➟ \:  \sf \: \: \frac{1 - cosθ}{1 + cosθ}  \\  \\  \\

= RHS

LHS = RHS

Hence proved

Similar questions
Math, 1 year ago