Math, asked by pa866266, 2 months ago

(cosectheta-cottheta)²=1-costheta/1+costheta​

Answers

Answered by vipashyana1
1

\mathfrak{ \huge{Answer:-}}\\\bold{ {(cosec θ- cotθ)}^{2} =  \frac{1 - cosθ}{1 + cosθ} } \\ cosecθ - cotθ =  \sqrt{ \frac{1 - cosθ}{1 + cosθ} }  \\ cosecθ - cotθ =  \sqrt{ \frac{1 - cosθ}{1 + cosθ} } \times  \sqrt{ \frac{1 -cosθ }{1 - cosθ} }   \\ cosec θ- cotθ =  \sqrt{ \frac{(1 - cosθ)(1 - cosθ)}{(1 +cos θ)(1 -cosθ )} }  \\ cosecθ - cotθ =  \sqrt{ \frac{ {(1 - cosθ)}^{2} }{ {(1)}^{2} -  {(cosθ)}^{2}  } }  \\ cosecθ - cotθ =  \sqrt{ \frac{ {(1 - cosθ)}^{2} }{1 -  {cos}^{2}θ } }  \\ cosec θ- cotθ =  \sqrt{ \frac{ {(1 - cosθ)}^{2} }{ {sin}^{2}θ } }  \\ cosecθ - cotθ =  \frac{1 - cosθ}{sinθ}  \\ cosecθ - cot θ=  \frac{1}{sinθ}  -  \frac{cosθ}{sinθ}  \\ cosecθ - cotθ = cosec θ- cot θ\\ LHS=RHS \\ Hence \: proved

Answered by mathdude500
0

Appropriate Question :- Prove that

\qquad\sf \:  {(cosec\theta -  cot\theta)}^{2} = \dfrac{1 - cos\theta}{1 + cos\theta} \\  \\

\large\underline{\sf{Solution-}}

Consider

\qquad\sf \: \dfrac{1 - cos\theta}{1 + cos\theta}  \\  \\

On rationalizing the denominator, we get

\qquad\sf \:  = \dfrac{1 - cos\theta}{1 + cos\theta} \times \dfrac{1 - cos\theta}{1 - cos\theta}   \\  \\

\qquad\sf \:  = \dfrac{(1 - cos\theta)^{2} }{ {1}^{2}  -   {cos}^{2} \theta}  \\  \\

\qquad\boxed{ \sf{ \: \because \: (x + y)(x - y) =  {x}^{2} -  {y}^{2} \: }} \\  \\

\qquad\sf \:  = \dfrac{(1 - cos\theta)^{2} }{{sin}^{2} \theta}  \\  \\

\qquad\boxed{ \sf{ \: \because \:  {sin}^{2}\theta +  {cos}^{2}\theta = 1 \: }} \\  \\

\qquad\sf \:  =  \:  {\left(\dfrac{1 - cos\theta}{sin\theta} \right)}^{2}  \\  \\

\qquad\sf \:  =  \:  {\left(\dfrac{1}{sin\theta} - \dfrac{cos\theta}{sin\theta} \right)}^{2}  \\  \\

We know,

\qquad \:\boxed{\begin{aligned}& \qquad \:\sf \: cosecx= \frac{1}{sinx}  \qquad \: \\ \\& \qquad \:\sf \: cotx= \frac{cosx}{sinx}  \end{aligned}} \qquad  \\  \\

So, using these results, we get

\qquad\sf \:  =  \:  {(cosec\theta - cot\theta)}^{2}  \\  \\

Hence,

\qquad\sf\implies \bf \:{(cosec\theta -  cot\theta)}^{2} = \dfrac{1 - cos\theta}{1 + cos\theta} \\\\

\rule{190pt}{2pt}

\begin{gathered}\: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{{More \: Formulae}}}} \\ \\ \bigstar \: \bf{sinx =  \dfrac{1}{cosecx} }\\ \\ \bigstar \: \bf{cosx =  \dfrac{1}{secx} }\\ \\ \bigstar \: \bf{tanx = \dfrac{sinx}{cosx}  = \dfrac{1}{cotx} }\\ \\ \bigstar \: \bf{cot x= \dfrac{cosx}{sinx}  = \dfrac{1}{tanx} }\\ \\ \bigstar \: \bf{cosec x) = \dfrac{1}{sinx} }\\ \\ \bigstar \: \bf{secx = \dfrac{1}{cosx} }\\ \\ \bigstar \: \bf{ {sin}^{2}x +  {cos}^{2}x = 1 } \\ \\ \bigstar \: \bf{ {sec}^{2}x -  {tan}^{2}x = 1  }\\ \\ \bigstar \: \bf{ {cosec}^{2}x -  {cot}^{2}x = 1 } \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions