cosecx(cosecx + cotx)dx
Answers
Answered by
56
Answer:
Step-by-step explanation:
I = ∫[cosecx(cosecx + cotx )].dx
I = ∫(x + cosecx . cotx).dx
I = ∫x .dx + ∫cosecx.cotx.dx
Using indentities:
∫cosec^2 x.dx= -cotx
∫cosecx.cotx.dx = -cosecx
I = -cotx - cosecx + C
Where C is Arbitrary Constant.
^_^
Answered by
1
Step-by-step explanation:
I= (x + cosecx . cotx) . dx
I= x.dx + cosecx. cotx. dx
identities are:
cosec^2x.cotx.dx= - cotx
cosecx.cotx.dx= - cosecx
I = - cotx - cosecx + c
c is the arbitrary constant....
hope you like my answer...
Similar questions