Math, asked by abhishekanand12, 11 months ago

cosecx(cosecx + cotx)dx​

Answers

Answered by Anonymous
56

Answer:

Step-by-step explanation:

I = ∫[cosecx(cosecx + cotx )].dx

I = ∫(x + cosecx . cotx).dx

I = ∫x .dx + ∫cosecx.cotx.dx

Using indentities:

∫cosec^2 x.dx= -cotx

∫cosecx.cotx.dx = -cosecx

I = -cotx - cosecx + C

Where C is Arbitrary Constant.

ALWAY_SSMIL_E  ^_^

Answered by princess2815
1

Step-by-step explanation:

I= (x + cosecx . cotx) . dx

I= x.dx + cosecx. cotx. dx

identities are:

cosec^2x.cotx.dx= - cotx

cosecx.cotx.dx= - cosecx

I = - cotx - cosecx + c

c is the arbitrary constant....

hope you like my answer...

Similar questions