Math, asked by anu5022, 6 months ago

( cosecx - cotx )^2 = 1 - cosx / 1 + cosx​

Answers

Answered by Anonymous
1

Answer:

hope u will understand......... thank u...... for u I do the sum plz mark me brainliest.......

Attachments:
Answered by Anonymous
7

Solution :

\bf{(cosec\:x - cot\:x)^{2} = \dfrac{1 - cos\:x}{1 + cos\:x}}

From the above equation , we get that :

  • LHS = \bf{(cosec\:x - cot\:x)^{2}} \\ \\

  • RHS = \bf{\dfrac{1 - cos\:x}{1 + cos\:x}} \\ \\

By solving the LHS , we get :

:\implies \bf{(cosec\:x - cot\:x)^{2}} \\ \\ \\ :\implies \bf{cosec^{2}x - 2 \times cosec\:x \times cot\:x + cot^{2}x} \\ \\ \bf{\because\:\:(a + b)^{2} = a^{2} + 2ab + b^{2}} \\ \\ \\ :\implies \bf{cosec^{2}x - 2cosec\:x cot\:x + cot^{2}x} \\ \\ \\ :\implies \bf{\bigg(\dfrac{1}{sin\:x}\bigg)^{2} - 2 \times \dfrac{1}{sin\:x} \times \dfrac{cos\:x}{sin\:x} + \bigg(\dfrac{cos\:x}{sin\:x}\bigg)^{2}} \\ \\ \\

:\implies \bf{\dfrac{1}{sin^{2}x} - \dfrac{2cos\:x}{sin^{2}x} + \dfrac{cos^{2}x}{sin^{2}x}} \\ \\ \\ :\implies \bf{\dfrac{1 - 2cos\:x + cos^{2}x}{sin^{2}x}} \\ \\ \\ :\implies \bf{\dfrac{1 - (cos\:x + cos\:x) + cos^{2}x}{sin^{2}x}} \\ \\ \\ :\implies \bf{\dfrac{1 - cos\:x - cos\:x + cos^{2}x}{sin^{2}x}} \\ \\ \\

:\implies \bf{\dfrac{1(1 - cos\:x) - cos\:x(1 - cos\:x)}{sin^{2}x}} \\ \\ \\ :\implies \bf{\dfrac{(1 - cos\:x)(1 - cos\:x)}{sin^{2}x}} \\ \\ \\ :\implies \bf{\dfrac{(1 - cos\:x)(1 - cos\:x)}{1 - cos^{2}x}\quad [sin^{2}\theta = 1 - cos^{2}\theta} \\ \\ \\ :\implies \bf{\dfrac{(1 - cos\:x)(1 - cos\:x)}{1^{2} - cos^{2}x}} \\ \\ \bf{\because\:\:(a - b)^{2} = (a + b)(a - b)} \\ \\ \\

:\implies \bf{\dfrac{(1 - cos\:x)(1 - cos\:x)}{(1 + cos\:x)(1 - cos\:x)}} \\ \\ \\ :\implies \bf{\dfrac{1 - cos\:x}{1 + cos\:x}} \\ \\ \\ \boxed{\therefore \bf{LHS  = \dfrac{1 - cos\:x}{1 + cos\:x}}} \\ \\

Hence the LHS of the equation is \bf{\dfrac{1 - cos\:x}{1 + cos\:x}} \\ \\

By putting the LHS and RHS together , we get :

:\implies \bf{LHS = RHS} \\ \\ \\ :\implies \bf{\dfrac{1 - cos\:x}{1 + cos\:x} = \dfrac{1 - cos\:x}{1 + cos\:x}} \\ \\ \\ \boxed{\therefore \bf{(cosec\:x - cot\:x)^{2} = \dfrac{1 - cos\:x}{1 + cos\:x}}} \\ \\

Proved !!

Similar questions