Math, asked by toordilmeet5, 5 months ago

(cosecx - sinx) ( secx - cosx ) = 1 /tanx + cotx​

Answers

Answered by manishchoudharyxe
0

Step-by-step explanation:

1/sin - sin = 1- sin^2 /sin

1-cos^2 / cos

cos^2 /sin × sin^2 /cos

= single

Answered by Anonymous
0

  \bold{\red {Question}}

Prove  \: that \:  (cosec \:  x - sin  \: x) \: (sec  \: x - cos  \: x) \: = \: 1/tanx \: - \: cotx?</p><p></p><p>

 \huge \:Solution

 \pink{RHS} \:  should \:  be  \: 1/(tanx \: + \: cotx)  \: or \:  you \:  wont  \: get  \: the \:  answer</p><p></p><p> \: (cosec  \: x - sin  \: x) \: (sec \:  x - cos  \: x) \:  =  \: 1 /  \: (tan  \: x + cot \:  x) \: </p><p> \: (cosec  \: x - sin  \: x) \: (sec \:  x - cos \:  x) \: (tan  \: x  \: + cot \:  x)  \: = \:  1 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:</p><p></p><p> \green{LHS } \:  = \:  (cosec \:  x - sin  \: x) \: (sec \:  x - cos \:  x) \: (tan  \: x + cot  \: x)</p><p> \: =  \: (1 / sin \:  x - sin \:  x) \: (1 / cos \:  x - cos \:  x) \: (tan  \: x + 1 / tan \:  x)</p><p> \: = \:  (1 - sin²x) \: (1 - cos²x)(tan²x + 1) \:  / \:  (sin  \: x * cos  \: x * tan  \: x)</p><p> \: =  \: cos²x * sin²x * \:  (tan²x  \: +  \: 1) \:  / (sin \:  x * cos  \: x * tan \:  x), \:  \red{ noting  \: sin²x + cos²x = 1}</p><p>=  \: cos²x  \: *  \: sin²x \:  * sec²x \:  / [sin  \: x * cos \:  x * (sin \:  x / cos  \: x)], \pink {noting tan²x + 1 = sec²x}</p><p> \: =  \: sin²x / sin²x,  \: as \:  sec²x \:  =  \: 1 / cos²x</p><p> \: = 1 \: </p><p> \: =  \: RHS

Similar questions