Math, asked by nitinthakurkt, 1 year ago

cosQ/1 +sinQ + 1+sinQ/cosQ = 2secQ​

Answers

Answered by Mankuthemonkey01
62

To Prove

\sf\frac{cos\theta}{1 + sin\theta} + \frac{1 + sin\theta}{cos\theta} = \sf 2sec\theta

\rule{100}2

Proof

\sf\frac{cos\theta}{1 + sin\theta} + \frac{1 + sin\theta}{cos\theta}

\sf\frac{cos^2\theta + (1 + sin\theta)^2}{cos\theta(1 + sin\theta)}

(By making denominators equal)

\sf\implies\frac{cos^2\theta + 1 + sin^2\theta + 2sin\theta}{cos\theta(1 + sin\theta)}

(Using (a+ b)² = a² + b² + 2ab)

\sf\implies\frac{1 + 1 + 2sin\theta}{cos\theta(1 + sin\theta)}

(using, cos²∅ + sin²∅ = 1)

\sf\implies\frac{2 + 2sin\theta}{cos\theta(1 + sin\theta)}

\sf\implies\frac{2(1 + sin\theta)}{cos\theta(1 + sin\theta)}

\sf\implies\frac{2}{cos\theta}

(cancelling (1 + sin∅) from both numerator and denominator)

\sf\implies 2sec\theta

(since, \sf\frac{1}{cos\theta} = sec\theta)

Hence proved.

Answered by Anonymous
51

*I am using A as angle*

\huge\underline\mathfrak\pink{Question-}

Prove that -

\sf\dfrac{CosA}{1+SinA} + \sf\dfrac{1+SinA}{CosA} = \sf{2SecA}

\huge\underline\mathfrak\pink{Solution-}

\sf\dfrac{CosA}{1+SinA} + \sf\dfrac{1+SinA}{CosA} = \sf{2SecA}

LHS,

\leadsto \sf\dfrac{CosA}{1+SinA} + \sf\dfrac{1+SinA}{CosA}

By taking LCM,

\leadsto \sf\dfrac{ { \cos(A) }^{2} +  {(1 +  \sin(A)) }^{2}  }{(1 +  \sin(A))(cos(A)) }

\leadsto \sf\dfrac{  { \cos(A) }^{2}  + 1 +  { \sin(A) }^{2}  + 2 \sin(A) }{(1 +  \sin(A)) \cos(A)  }

\leadsto \sf\dfrac{1+1+2SinA}{(1+SinA)(CosA)}

\leadsto \sf\dfrac{2(1+SinA)}{(1+SinA)CosA}

\leadsto \sf\dfrac{2(\cancel{1+SinA)}}{(\cancel{1+SinA)}CosA}

\leadsto \sf\dfrac{2}{CosA}

\leadsto \sf{2SecA}

\leadsto RHS

Hence proved!

___________________________

\large\bold\blue{Identities\:used-}

★ ( a + b )² = a² + b² + 2ab

★ Sin²A + Cos²A = 1

\sf\dfrac{1}{CosA} = SecA

Similar questions