costheta / 1- sin theta + 1-sintheta /costheta =2sectheta
Answers
Step-by-step explanation:
Consider the L.H.S
\dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}
sinθ+cosθ−1
sinθ−cosθ+1
=\left( \dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1} \right)\times \left( \dfrac{\sin \theta +\cos \theta +1}{\sin \theta +\cos \theta +1} \right)=(
sinθ+cosθ−1
sinθ−cosθ+1
)×(
sinθ+cosθ+1
sinθ+cosθ+1
)
=\left( \dfrac{\sin \theta +1-\cos \theta }{\sin \theta +\cos \theta -1} \right)\times \left( \dfrac{\sin \theta +1+\cos \theta }{\sin \theta +\cos \theta +1} \right)=(
sinθ+cosθ−1
sinθ+1−cosθ
)×(
sinθ+cosθ+1
sinθ+1+cosθ
)
=\dfrac{{{\left( \sin \theta +1 \right)}^{2}}-{{\cos }^{2}}\theta }{{{\left( \sin \theta +\cos \theta \right)}^{2}}-{{1}^{2}}}=
(sinθ+cosθ )
2
−1
2
(sinθ+1)
2
−cos
2
θ
=\dfrac{{{\sin }^{2}}\theta +1+2\sin \theta -{{\cos }^{2}}\theta }{{{\sin }^{2}}\theta +{{\cos }^{2}}\theta +2\sin \theta \cos \theta -1}=
sin
2
θ+cos
2
θ+2sinθcosθ−1
sin
2
θ+1+2sinθ−cos
2
θ
Since, {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1sin
2
θ+cos
2
θ=1
Therefore,
=\dfrac{1-{{\cos }^{2}}\theta +1+2\sin \theta -{{\cos }^{2}}\theta }{1+2\sin \theta \cos \theta -1}=
1+2sinθcosθ−1
1−cos
2
θ+1+2sinθ−cos
2
θ
=\dfrac{2-2{{\cos }^{2}}\theta +2\sin \theta }{2\sin \theta \cos \theta }=
2sinθcosθ
2−2cos
2
θ+2sinθ
=\dfrac{1-{{\cos }^{2}}\theta +\sin \theta }{\sin \theta \cos \theta }=
sinθcosθ
1−cos
2
θ+sinθ
=\dfrac{{{\sin }^{2}}\theta +\sin \theta }{\sin \theta \cos \theta }=
sinθcosθ
sin
2
θ+sinθ
=\dfrac{\sin \theta +1}{\cos \theta }=
cosθ
sinθ+1
=\dfrac{1}{\cos \theta }+\dfrac{\sin \theta }{\cos \theta }=
cosθ
1
+
cosθ
sinθ
=\sec \theta +\tan \theta =secθ+tanθ
=\left( \sec \theta +\tan \theta \right)\times \left( \dfrac{\sec \theta -\tan \theta }{\sec \theta -\tan \theta } \right)=(secθ+tanθ )×(
secθ−tanθ
secθ−tanθ
)
=\dfrac{{{\sec }^{2}}\theta -{{\tan }^{2}}\theta }{\sec \theta -\tan \theta }=
secθ−tanθ
sec
2
θ−tan
2
θ
We know that
{{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1sec
2
θ−tan
2
θ=1
Therefore,
=\dfrac{1}{\sec \theta -\tan \theta }=
secθ−tanθ