Math, asked by chiku6605, 8 months ago

cosx=-1/2,x lies in third quadrant​

Answers

Answered by AssasianCreed
17

\huge\mathtt{Question:-}

  • cosx=-1/2,x lies in third quadrant

\huge\mathtt{Given:-}

  • cosx=-1/2

\huge\mathtt{To \: find:-}

  • x lies in third quadrant

\huge\mathtt{Solution:-}

\implies\sf \sin^{2} x  +  \cos ^{2}   x = 1

\implies\sf \sin ^{2} x = 1 -  \cos^{2} x

\implies\sf \sin^{2} x =1 -   \dfrac{1}{4}

 \:  \:  \:  \:  \:   \:  \:  \:  \:  \:   = \dfrac{4 - 1}{4}

\implies\sf \sin^{2} x =  \dfrac{3}{4}

\implies\sf  \sin(x)  =  \sqrt{ \dfrac{3}{4} }

\boxed { \sf \sin(x)  =     \dfrac{  - \sqrt{3} }{2}  }

\implies\sf \cos ^{2} x = {\big(} \frac{ - 1}{2}\big )^2

\implies\sf \cos^{2} x =  \dfrac{1}{4} \sf   \:  \: (x \: lies \: in \: 3^{rd} \: quadrant)

\implies\sf \tan(x)  = \sf \dfrac{ \sin( x) }{ \cos(x) }  =  \frac{ -  \dfrac{ \sqrt{3} }{2} }{ -  \dfrac{ 1}{2} }  =  \dfrac{ \sqrt{3} }{2}  \times  \dfrac{2}{1}  =  \sqrt{3}

\implies\sf \csc(x) = \dfrac{1}{ \sin(x) } = \dfrac{-2}{ \sqrt{3} }

\implies\sf \sec(x)  =  \dfrac{1}{ \cos(x) }  =  \dfrac{ - 2}{1}  =  - 2

\implies\sf \cot(x)  =  \dfrac{1}{ \sqrt{3} }

Hence solved !!

Attachments:
Similar questions