Math, asked by swiss001, 17 days ago

Cosx/1-tanx +sinx/1-cotx=sinx+cosx

Answers

Answered by BrainlyJossh
4

Answer:

LHS=cosx1−tanx+sinx1−cotx =cos2xcosx(1−tanx)+sin2xsinx(1−cotx) =cos2xcosx−sinx+sin2xsinx−cosx =cos2xcosx−sinx−sin2xcosx−sinx =cos2x−sin2

Answered by nihasrajgone2005
3

Answer:

LHS= [cos x / (1-tan x)] + [ sin x / (1-cot x)]

= [cos x / (1-tan x)]+ [sin x / (1-(1/tan x))]

= [cos x / (1-tan x)]+ [sin x / (tan x-1)/tan x]

= [cos x / (1-tan x)]+ [(sin x tan x) / (tan x-1)]

= [cos x / (1-tan x)]- [(sin x tan x) / (1-tan x)]

= (cos x-sin x tan x)/ (1-tan x)

= [cos x-sin x (sin x/cos x)]/ [1-(sin x/cos x)]

= [cos x-(sin²x/cos x)]/ [1-(sin x/cos x)]

= [(cos ²x-sin ²x )/cos x]/ [(cos x-sin x)/cos x]

= (cos ²x-sin ²x )/(cos x-sin x)

= [(cos x+sin x ) (cos x-sin x )]/(cos x-sin x)

= cos x+sin x

= RHS

please drop some ❤️❤️❤️

Step-by-step explanation:

please f-o-l-l-o-w m-e bro

Similar questions