Math, asked by suman212003pdz455, 1 year ago

cosx 2 + cos 2 (x+π÷3) + cos2
please see the image

Attachments:

Answers

Answered by gangwarakash999
1
I hope it may be help u
Attachments:
Answered by rakeshmohata
0
Hope you like my process
=======================
Formula to be used
=-=-=-=-=-=-=-=-=-=-=-
 =  > \bf  \cos ^{2} (x)  =  \frac{1 +  \cos(2x) }{2}
_______________________
  =  > \cos ^{2} (x)  +  \cos ^{2} (x +  \frac{\pi}{3} )  +  \cos ^{2} (x -  \frac{\pi}{3} )  \\  \\  =  >  \cos {}^{2} (x)  +  \frac{1 +  \cos2(x +  \frac{\pi}{3} ) }{2}  +  \frac{1 +  \cos2(x -  \frac{\pi}{3} ) }{2}  \\  \\  =  >  \frac{2 \cos {}^{2} ( x ) + 1 +  \cos2(x +  \frac{\pi}{3} )  + 1 +  \cos2(  x  -   \frac{\pi}{3} )  }{2}  \\  \\  =  >  \frac{1 +  \cos(2x) + 2 + 2 \cos( \frac{2(x +  \frac{\pi}{3} ) + 2(x -  \frac{\pi}{3}) }{2} ) \cos( \frac{2(x   + \frac{\pi}{3}  )- (x -  \frac{\pi}{3}) }{2} )   }{2}  \\  \\  =  >  \frac{3 +  \cos(2x)  + 2 \cos(x +  \frac{\pi}{3}  + x -  \frac{\pi}{3} )  \cos(x +  \frac{\pi}{3} - x +  \frac{\pi}{3}  ) }{2}  \\  \\  =  >  \frac{3 +  \cos(2x) + 2 \cos(2x) \cos( \frac{2\pi}{3} )   }{2}  \\  \\  =    > \frac{3 +  \cos(2x)  +  2\cos(2x) \times ( -  \frac{1}{2})  }{2} \\  \\    =   >  \frac{3 +  \cos(2x) -  \cos(2x)  }{2 }  \\  \\  =  >  \bf \underline{ \frac{3}{2} } \\  \\  \:  \:  \:  \:  \:  \: \underline { < proved > }
____________________________
Hope this is ur required answer

Proud to help you
Similar questions