Math, asked by ankushkhadka1018, 1 year ago

cosx+cos2x+cos3x+cos4x=0 number of real values of x?

Answers

Answered by Anonymous
33
I hope this will help u...
Attachments:

Anonymous: Plz mark my answer as Brainliest
Yuichiro13: Ummm.. There's just five values
Answered by pinquancaro
25

Answer:

x=(2n+1)(\frac{\pi}{2})

x=(2n+1)(\frac{\pi}{5})

x=(2n+1)\pi

Step-by-step explanation:

Given : Expression \cos x+\cos2x+\cos3x+\cos4x=0

To find : Number of real values of x?

Solution :

Re-write expression as \cos x+\cos3x+\cos2x+\cos4x=0

Applying trigonometric identity,

\cos A+\cos B =2\cos (\frac{A+B}{2})\cos (\frac{A-B}{2})

2\cos (\frac{x+3x}{2})\cos (\frac{x-3x}{2})+2\cos(\frac{2x+4x}{2})\cos (\frac{2x-4x}{2})=0

2\cos 2x\cos x+2\cos3x\cos x=0

2\cos x(\cos 2x+\cos3x)=0

Applying again,

2\cos x(2\cos (\frac{2x+3x}{2})\cos (\frac{2x-3x}{2}))=0

2\cos x(2\cos (\frac{5x}{2})\cos (\frac{x}{2}))=0

\cos x\times \cos (\frac{5x}{2})\times \cos (\frac{x}{2})=0

i.e. \cos x=0

\cos x=\cos (\frac{\pi}{2})

x=(2n+1)(\frac{\pi}{2})

or \cos (\frac{5x}{2})=0

\cos (\frac{5x}{2})=\cos (\frac{\pi}{2})

\frac{5x}{2}=(2n+1)(\frac{\pi}{2})

x=(2n+1)(\frac{\pi}{5})

or \cos (\frac{x}{2})=0

\cos (\frac{x}{2})=\cos (\frac{\pi}{2})

\frac{x}{2}=(2n+1)(\frac{\pi}{2})

x=(2n+1)\pi

Similar questions