cosx=root99\10
find the value of log sinx+logcosx+logtanx
rishimhaske:
is it root 99 / 10 or root 99/root 10
Answers
Answered by
7
we know
logA+logB+logC=logABC
logSin+logCos+logTan=log sin cos tan
but
tan=sin/cos
so
log sin cos tan=logsin cos (sin cos)
log sin cos tan=sin²
by identity,
sin²=1-cos²
so
log sin cos tan=log1-(√99/10)²
log sin cos tan=log1/100
so answer is
log1/100
logA+logB+logC=logABC
logSin+logCos+logTan=log sin cos tan
but
tan=sin/cos
so
log sin cos tan=logsin cos (sin cos)
log sin cos tan=sin²
by identity,
sin²=1-cos²
so
log sin cos tan=log1-(√99/10)²
log sin cos tan=log1/100
so answer is
log1/100
Answered by
4
log sinx+logcosx+logtanx
=logsinx*cosx*tanx
=logsinx*cosx*(six/cosx)
=logsin^2x
=log(1-cos^2x)
=log(1-99/100)
=log(1/100)
=logsinx*cosx*tanx
=logsinx*cosx*(six/cosx)
=logsin^2x
=log(1-cos^2x)
=log(1-99/100)
=log(1/100)
Similar questions