Cosx+sinx=√2cos x show that cos x-sinx=√2 sinx
Answers
Answered by
2
Cosx + since=√2cosx
(Cosx+sinx)^2=2cosx
Cos^2x-sim^2x=2cosxsinx
Cosx-sinx=✓2sinx
(Cosx+sinx)^2=2cosx
Cos^2x-sim^2x=2cosxsinx
Cosx-sinx=✓2sinx
iamhkk257:
Sorry it's 2cosx^2
Answered by
3
Hi,
Cosx + sinx = √2cosx-----( 1 )
Square both sides of equation ( 1 ),
( Cosx + sinx )² = ( √2cosx )²
Cos ² x + sin² x + 2sinxcosx = 2cos²x
1 + 2sinxcosx = 2cos²x
2sinx cosx = 2cos²x -1 ----( 2 )
(Cosx-sinx)² = (cosx + sinx)²-4sinxcosx
= ( √2cosx)² - 2(2cos²x-1)
= 4cos²x - 4cos²x + 2
= 2
Therefore ,
Cosx - sinx = √2
I hope this helps you.
:)
Cosx + sinx = √2cosx-----( 1 )
Square both sides of equation ( 1 ),
( Cosx + sinx )² = ( √2cosx )²
Cos ² x + sin² x + 2sinxcosx = 2cos²x
1 + 2sinxcosx = 2cos²x
2sinx cosx = 2cos²x -1 ----( 2 )
(Cosx-sinx)² = (cosx + sinx)²-4sinxcosx
= ( √2cosx)² - 2(2cos²x-1)
= 4cos²x - 4cos²x + 2
= 2
Therefore ,
Cosx - sinx = √2
I hope this helps you.
:)
Similar questions