cosx=ycos(a+x) second order derivative
Answers
Answered by
4
first order
-sinx=y(-sin(a+x))+dy/dxcos(a+x)
second order
-cosx=-(ycosx(a+x)+dy/dxsin(a+x))+(dy/dx(-sin(a+x))+d2y/dxcos(a+x))..
hope it is helpfull
-sinx=y(-sin(a+x))+dy/dxcos(a+x)
second order
-cosx=-(ycosx(a+x)+dy/dxsin(a+x))+(dy/dx(-sin(a+x))+d2y/dxcos(a+x))..
hope it is helpfull
kvnmurty:
right
Answered by
10
Cos x = y Cos (a + x)
Differentiating wrt x :
- sin x = y' * Cos (a+x) + y ( -sin(a+x) ) * (a+x)'
y' * Cos(a+x) = y * Sin(a+x) - sin x
differentiating again wrt x
y'' * Cos(a+x) + y' *(-sin(a+x)) = y' * SIn(a+x) + y * COs(a+x) - cos x
y'' = 2 y' tan(a+x) + y - cosx / Cos(a+x)
Differentiating wrt x :
- sin x = y' * Cos (a+x) + y ( -sin(a+x) ) * (a+x)'
y' * Cos(a+x) = y * Sin(a+x) - sin x
differentiating again wrt x
y'' * Cos(a+x) + y' *(-sin(a+x)) = y' * SIn(a+x) + y * COs(a+x) - cos x
y'' = 2 y' tan(a+x) + y - cosx / Cos(a+x)
Similar questions