Math, asked by vrajshah089, 3 months ago

cosy dy+ (siny -(x+1)^2)dx=0

Answers

Answered by shadowsabers03
4

Given to solve the differential equation,

\longrightarrow\cos y\,dy+\left(\sin y-(x+1)^2\right)\,dx=0

Dividing by dx,

\longrightarrow \cos y\,\dfrac{dy}{dx}+\sin y-(x+1)^2=0

\longrightarrow \cos y\,\dfrac{dy}{dx}+\sin y=(x+1)^2

Put,

\longrightarrow u=\sin y

\longrightarrow \dfrac{du}{dx}=\cos y\,\dfrac{dy}{dx}

Then,

\longrightarrow\dfrac{du}{dx}+u=(x+1)^2

Multiply each term by a function in x only, i.e., say f(x).

\longrightarrow\dfrac{du}{dx}\cdot f(x)+u\cdot f(x)=(x+1)^2\cdot f(x)

Assume \dfrac{d}{dx}\left[f(x)\right]=f(x) such that,

\longrightarrow\dfrac{d}{dx}\left[u\cdot f(x)\right]=(x+1)^2\cdot f(x)\quad\quad\dots(1)

So,

\longrightarrow\dfrac{d}{dx}\left[f(x)\right]=f(x)

\longrightarrow f'(x)=f(x)

\longrightarrow\dfrac{f'(x)}{f(x)}=1

Multiplying by dx,

\longrightarrow\dfrac{f'(x)}{f(x)}\ dx=\ dx

Integrating,

\displaystyle\longrightarrow\int\dfrac{f'(x)}{f(x)}\ dx=\int dx

\displaystyle\longrightarrow\log|f(x)|=x+k_1

\displaystyle\longrightarrow f(x)=e^{x+k_1}

Taking e^{k_1}=C_1,

\displaystyle\longrightarrow f(x)=C_1\,e^x

Then (1) becomes,

\longrightarrow\dfrac{d}{dx}\left[C_1ue^x\right]=C_1(x+1)^2e^x

\longrightarrow\dfrac{d}{dx}\left[ue^x\right]=(x+1)^2e^x

\longrightarrow d\left[ue^x\right]=(x+1)^2e^x\,dx

Integrating,

\displaystyle\longrightarrow ue^x=\int(x+1)^2e^x\,dx

\displaystyle\longrightarrow ue^x=e^x\left[(x+1)^2-2(x+1)+2\right]+C_2

[Note that d(x+1)=dx.]

\displaystyle\longrightarrow ue^x=e^x\left(x^2+1\right)+C_2

Undoing substitution u=\sin y and taking C_2=C,

\displaystyle\longrightarrow e^x\sin y=e^x\left(x^2+1\right)+C

\displaystyle\longrightarrow\sin y=x^2+Ce^{-x}+1

\displaystyle\longrightarrow\underline{\underline{y=\sin^{-1}\left(x^2+Ce^{-x}+1\right)}}

Answered by Anonymous
4

\huge{\underline{\underline{\mathrm{\red{AnswEr}}}}}

Given to solve the differential equation,

\longrightarrow\cos y\,dy+\left(\sin y-(x+1)^2\right)\,dx=0

Dividing by dx,

\longrightarrow \cos y\,\dfrac{dy}{dx}+\sin y-(x+1)^2=0

\longrightarrow \cos y\,\dfrac{dy}{dx}+\sin y=(x+1)^2

Put,

\longrightarrow u=\sin y

\longrightarrow \dfrac{du}{dx}=\cos y\,\dfrac{dy}{dx}

Then,

\longrightarrow\dfrac{du}{dx}+u=(x+1)^2

Multiply each term by a function in x only, i.e., say f(x).

\longrightarrow\dfrac{du}{dx}\cdot f(x)+u\cdot f(x)=(x+1)^2\cdot f(x)

Assume \dfrac{d}{dx}\left[f(x)\right]=f(x) such that,

\longrightarrow\dfrac{d}{dx}\left[u\cdot f(x)\right]=(x+1)^2\cdot f(x)\quad\quad\dots(1)

So,

\longrightarrow\dfrac{d}{dx}\left[f(x)\right]=f(x)

\longrightarrow f'(x)=f(x)

\longrightarrow\dfrac{f'(x)}{f(x)}=1

Multiplying by dx,

\longrightarrow\dfrac{f'(x)}{f(x)}\ dx=\ dx

Integrating,

\displaystyle\longrightarrow\int\dfrac{f'(x)}{f(x)}\ dx=\int dx

\displaystyle\longrightarrow\log|f(x)|=x+k_1

\displaystyle\longrightarrow f(x)=e^{x+k_1}

Taking e^{k_1}=C_1,

\displaystyle\longrightarrow f(x)=C_1\,e^x

Then (1) becomes,

\longrightarrow\dfrac{d}{dx}\left[C_1ue^x\right]=C_1(x+1)^2e^x

\longrightarrow\dfrac{d}{dx}\left[ue^x\right]=(x+1)^2e^x

\longrightarrow d\left[ue^x\right]=(x+1)^2e^x\,dx

Integrating,

\displaystyle\longrightarrow ue^x=\int(x+1)^2e^x\,dx

\displaystyle\longrightarrow ue^x=e^x\left[(x+1)^2-2(x+1)+2\right]+C_2

[Note that d(x+1)=dx.]

\displaystyle\longrightarrow ue^x=e^x\left(x^2+1\right)+C_2

Undoing substitution u=\sin y and taking C_2=C,

\displaystyle\longrightarrow e^x\sin y=e^x\left(x^2+1\right)+C

\displaystyle\longrightarrow\sin y=x^2+Ce^{-x}+1

\displaystyle\longrightarrow\underline{\underline{y=\sin^{-1}\left(x^2+Ce^{-x}+1\right)}}

Similar questions