cosy = xcos (a+y)
prove that
dy/dx=cos^2(a+y)\sina
Answers
Answered by
1
Answer:
Cosy=xcos(a+y)
x=cosy/cos(a+y)
x=cosysec(a+y)
Differentiating with respect to y
dx/dy =D[cosysec(a+y)]
dx/dy=sec(a+y)D(cosy)+cosyD(sec(a+y))
D(cosy)=-siny
D(sec(a+y))=sec(a+y)tan(a+y)
dx/dy=-sinysec(a+y)+cosysec(a+y)tan(a+y)
dx/dy=sec(a+y)[cosytan(a+y)-siny]
But tan(a+y)=(sin(a+y))/(cos(a+y))
dx/dy=sec(a+y)[cosy [(sin(a+y)/cos(a+y)]-siny]
dx/dy=sec(a+y){[cosysin(a+y)-sinycos(a+y)]/(cos(a+y)}
Sin(A-B)=sinAcosB-cosAsinB
Secx=1/cosx
dx/dy=sec²(a+y)(sin(a+y-y))
dx/dy=sec²(a+y)sina
Taking reciprocal
dy/dx=1/(sec²(a+y)sinA)
1/secx=cosx
dy/dx =cos²(a+y)/sina
Similar questions
Math,
1 month ago
Business Studies,
2 months ago
Social Sciences,
9 months ago
Computer Science,
9 months ago