Math, asked by Yuvian88201, 1 year ago

cot⁻¹ 1+ tan⁻¹ 2 + cot⁻¹ 1/3=π,Prove it.

Answers

Answered by Swarup1998
4

Proof :

\mathrm{L.H.S.=cot^{-1}1+tan^{-1}2+cot^{-1}\frac{1}{3}}

\mathrm{=\frac{\pi}{4}+tan^{-1}2+\frac{\pi}{2}-tan^{-1}\frac{1}{3}}

\mathrm{=\frac{3\pi}{4}+tan^{-1}2-tan^{-1}\frac{1}{3}}

\mathrm{=\frac{3\pi}{4}+tan^{-1}\frac{2-\frac{1}{3}}{1+\frac{2}{3}}}

\mathrm{=\frac{3\pi}{4}+tan^{-1}1}

\mathrm{=\frac{3\pi}{4}+\frac{\pi}{4}}

\mathrm{=\frac{4\pi}{4}}

\mathrm{=\pi=R.H.S.}

Hence, proved.

Answered by ITZWildBoy
2

Answer:

\huge\underline\mathfrak\purple{Solution}

Attachments:
Similar questions