Math, asked by Bubooo, 11 months ago

cot_1 (1+x/1-x)=1/2 cot _1 (1/x)​

Answers

Answered by dhanush3877
0

Answer:

Given that,

y

=

sin

4

(

cot

1

1

x

1

+

x

)

,

we need

d

y

d

x

.

We substitute

x

=

cos

2

θ

,

so that,

1

<

x

<

1

.

Note that, in order to make

1

x

1

+

x

meaningful, we must have

1

<

x

<

1

,

which justifies our substitution :

x

=

cos

2

θ

.

y

=

sin

4

(

cot

1

1

x

1

+

x

)

,

=

sin

4

(

cot

1

1

cos

2

θ

1

+

cos

2

θ

)

,

=

sin

4

cot

1

2

sin

2

θ

2

cos

2

θ

,

=

sin

4

(

cot

1

(

tan

θ

)

)

,

=

sin

4

(

cot

1

{

cot

(

π

2

θ

)

}

)

,

=

sin

4

(

π

2

θ

)

,

=

{

sin

(

π

2

θ

)

}

4

,

=

cos

4

θ

,

=

(

cos

2

θ

)

2

,

=

{

1

+

cos

2

θ

2

}

2

.

y

=

1

4

(

1

+

x

)

2

...

...

...

...

...

...

...

...

...

...

...

...

...

.

[

,

cos

2

θ

=

x

]

.

d

y

d

x

=

1

4

d

d

x

(

1

+

x

)

2

,

=

1

4

2

(

1

+

x

)

d

d

x

(

1

+

x

)

...

...

...

...

.

.

[

,

the Chain Rule],

d

y

d

x

=

1

2

(

1

+

x

)

.

Similar questions