Math, asked by abhishekpati2003, 11 months ago

cot^-1(9)+cosec^-1{(√41)/4}=π/4, prove it ​

Answers

Answered by RvChaudharY50
16

\Large\underline\mathfrak{Question}

 \bf prove \: that : \cot^{( - 1)} (9) +  \csc^{( - 1)} ( \frac{ \sqrt{41} }{4} ) =  \frac{\pi}{4}

\large\star{\underline{\tt{\red{Answer}}}}\star

we know That :-

\red\leadsto  \sf\:  \csc( \theta)  =  \frac{h}{p}

Given That :-

→ h/p = (√41/4)

Using Pythagoras Now, we get,

→ b = √(h)² - (p)²

→ b = √(√41)² - (4)²

→ b = √(41 - 16)

→ b = √25

→ b = 45

So,

\red\leadsto \sf \: tan \theta =  \frac{p}{b} =  \frac{4}{5}

___________________

Now, using :-

\red\leadsto \bf \: cot \theta =  \frac{1}{tan \theta} \\ \red\leadsto \bf \: cot^{( - 1)}(9) =tan^{( - 1)} \frac{1}{9}

__________________

we get :-

 \red\longrightarrow \cot^{( - 1)} (9) +  \csc^{( - 1)} ( \frac{ \sqrt{41} }{4} ) =  \frac{\pi}{4} \\  \\  \red\longrightarrow \:  \sf \: tan^{( - 1)} \frac{1}{9} + tan^{( - 1)}( \frac{4}{5}) =  \frac{\pi}{4}

Now using :-

   \green{\boxed{\bf \: tan^{( - 1)}x + tan^{( - 1)}y = tan^{( - 1)}( \frac{x + y}{1 - xy})}}

_________________

\red\longrightarrow \sf \: tan^{( - 1)}( \dfrac{ \frac{1}{9} +  \frac{4}{5}  }{1 -  \frac{1}{9} \times  \frac{4}{5}  }) =  \dfrac{\pi}{4} \\  \\ \red\longrightarrow \sf \: tan^{( - 1)}( \frac{ \frac{5 + 36}{45} }{ \frac{45 - 4}{45} }) =  \frac{\pi}{4} \\  \\ \red\longrightarrow \sf \: tan^{( - 1)}( \frac{41}{41}) =  \frac{\pi}{4} \\  \\   \red\longrightarrow \sf \: tan^{( - 1)}(1) =  \frac{\pi}{4} \\  \\  \red\longrightarrow \sf \: tan^{( - 1)}(tan( \frac{\pi}{4})) =   \frac{\pi}{4} \\  \\  \red\longrightarrow  \boxed{\bf \: \frac{\pi}{4} =  \frac{\pi}{4}}

\large\red{\boxed{\tt\blue{Hence} \: \purple{RHS}\green{=} \orange{LHS} \: \pink{(Proved)}}} \:

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \huge\bold{\red{\ddot{\smile}}}

\rule{200}{4}

Answered by rajsingh24
48

\huge{\underline{\underline{\mathfrak\green{Question\::}}}}

\sf{cot^-1(9)+cosec^-1{(V41)/4}=π/4, prove\: it.}

\huge{\underline{\underline{\mathfrak\red{Solution\::}}}}

\implies \sf{in\: right \:angle \:triangle. }

\implies \sf{h^2 = b^2+p^2 \:  (Pythagoras\: theorem) }

\implies \sf{(V41)^2 = b^2 + (4)^2}

\implies \sf{b^2 = 41-16}

\implies \sf{b^2= 25}

\implies \pink{\boxed{ b = 5cm}}

________________________

 \: \implies \: \sf \: cot {}^{ - 1} 9 +  \csc {}^{ - 1}  \frac{ \sqrt{41} }{4}  \\  \implies \sf \:  tan {}^{ - 1}  \frac{1}{9}  +tan {}^{ - 1 \frac{}{} }  \:  \frac{4}{5}  \\  \implies  \: \sf tan {}^{ - 1}  =  \frac{ \frac{1}{9}  +   \frac{4}{5} }{1 -  \frac{1}{9} ( \frac{4}{5}) }  \\ \implies  \: \sf \: tan { }^{ - 1}  =  \frac{ \frac{5 + 36}{45} }{ \frac{45 - 4}{45} }  \\ \implies  \: \sf \:  tan {}^{ - 1}  =  \frac{\cancel{41}}{\cancel{41}} \\ \implies  \: \sf  \: tan {}^{ - 1}  = 1 \\ \implies  \: \sf \blue{\boxed{\boxed{tan {}^{ - 1}  = \frac{\pi}{4}}}}

Similar questions