Math, asked by abhishekpati2003, 11 months ago

cot^-1(9)+cosec^-1{(√41)/4}=π/4, prove it ​

Answers

Answered by RvChaudharY50
7

\Large\underline\mathfrak{Question}

 \bf prove \: that : \cot^{( - 1)} (9) +  \csc^{( - 1)} ( \frac{ \sqrt{41} }{4} ) =  \frac{\pi}{4}

\large\star{\underline{\tt{\red{Answer}}}}\star

we know That :-

\red\leadsto  \sf\:  \csc( \theta)  =  \frac{h}{p}

Given That :-

→ h/p = (√41/4)

Using Pythagoras Now, we get,

b = √(h)² - (p)²

→ b = √(√41)² - (4)²

→ b = √(41 - 16)

→ b = √25

→ b = 45

So,

\red\leadsto \sf \: tan \theta =  \frac{p}{b} =  \frac{4}{5}

___________________

Now, using :-

\red\leadsto \bf \: cot \theta =  \frac{1}{tan \theta} \\ \red\leadsto \bf \: cot^{( - 1)}(9) =tan^{( - 1)} \frac{1}{9}

__________________

we get :-

 \red\longrightarrow \cot^{( - 1)} (9) +  \csc^{( - 1)} ( \frac{ \sqrt{41} }{4} ) =  \frac{\pi}{4} \\  \\  \red\longrightarrow \:  \sf \: tan^{( - 1)} \frac{1}{9} + tan^{( - 1)}( \frac{4}{5}) =  \frac{\pi}{4}

Now using :-

   \green{\boxed{\bf \: tan^{( - 1)}x + tan^{( - 1)}y = tan^{( - 1)}( \frac{x + y}{1 - xy})}}

_________________

\red\longrightarrow \sf \: tan^{( - 1)}( \dfrac{ \frac{1}{9} +  \frac{4}{5}  }{1 -  \frac{1}{9} \times  \frac{4}{5}  }) =  \dfrac{\pi}{4} \\  \\ \red\longrightarrow \sf \: tan^{( - 1)}( \frac{ \frac{5 + 36}{45} }{ \frac{45 - 4}{45} }) =  \frac{\pi}{4} \\  \\ \red\longrightarrow \sf \: tan^{( - 1)}( \frac{41}{41}) =  \frac{\pi}{4} \\  \\   \red\longrightarrow \sf \: tan^{( - 1)}(1) =  \frac{\pi}{4} \\  \\  \red\longrightarrow \sf \: tan^{( - 1)}(tan( \frac{\pi}{4})) =   \frac{\pi}{4} \\  \\  \red\longrightarrow  \boxed{\bf \: \frac{\pi}{4} =  \frac{\pi}{4}}

\large\red{\boxed{\tt\blue{Hence} \: \purple{RHS}\green{=} \orange{LHS} \: \pink{(Proved)}}} \:

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \huge\bold{\red{\ddot{\smile}}}

\rule{200}{4}

Similar questions