cot 15. Prove that: cotA/1+tanA=cotA-1/2-sec2A
Answers
Answered by
5
Answer:
Notice,
LHS=cotA−12−sec2ALHS=cotA−12−sec2A
=1tanA−12−(1+tan2A)=1tanA−12−(1+tan2A)
=1−tanAtanA1−tan2A=1−tanAtanA1−tan2A
=1−tanAtanA(1−tan2A)=1−tanAtanA(1−tan2A)
=1−tanAtanA(1−tanA)(1+tanA)=1−tanAtanA(1−tanA)(1+tanA)
=1tanA(1+tanA)=1tanA(1+tanA)
=cotA1+tanA=cotA1+tanA
=RHS
mark me brianlist if it helps
Answered by
0
Step-by-step explanation:
Here is your answer dear
Attachments:
Similar questions