cot (15° - A) + tan(15° + A) =
a) 4cos2A/1 + 2cos2A
b) 4cos2A/1 - 2sin2A
c)4cos2A/1 + 2sin2A
d) 4cos2A/1 - 2cos2A
Answers
☑REFER THE ATTACHMENT ☑
➵HENCE OPTION B IS CORRECT☑
cot (15° - A) + tan(15° + A) =?
ANSWER-:
EXPLANATION.
⇒ cot(15° - A) + tan(15° + A).
As we know that,
We can write equation as,
⇒ cot(15° - A) = cos(15° - A)/sin(15° - A).
⇒ tan(15° + A) = sin(15° + A)/cos(15° + A).
Using this formula in equation, we get.
⇒ cos(15° - A)/sin(15° - A) + sin(15° + A)/cos(15° + A).
Taking L.C.M. in equation, we get.
⇒ cos(15° - A).cos(15° + A) + sin(15° + A).sin(15° - A)/sin(15° - A).cos(15° + A).
As we know that,
Formula of :
⇒ cos(A - B) = cos(A).cos(B) + sin(A).sin(B).
Using the formula in equation, we get.
⇒ cos[(15° - A) - (15° + A)]/sin(15° - A).cos(15° + A)
⇒ cos[15° - A - 15° - A]/sin(15° - A).cos(15° + A).
⇒ cos[-2A]/sin(15° - A).cos(15° + A).
Multiply and divide the equation by 2, we get.
⇒ 2 cos(-2A)/2sin(15° - A).cos(15° + A).
As we know that,
Formula of :
⇒ 2 cos(A).sin(B) = sin(A + B) - sin(A - B).
Using this formula in equation, we get.
⇒ 2 cos(-2A)/sin[(15° - A) + (15° + A)] - sin[(15° - A) - (15° + A)].
⇒ 2 cos(-2A)/sin[15° - A + 15° + A] - sin[15° - A - 15° - A].
⇒ 2 cos(-2A)/sin(30°) - sin(-2A).
As we know that,
Formula of :
⇒ sin30° = 1/2.
Using this formula in equation, we get.
⇒ 2 cos(-2A)/1/2 - sin(-2A).
⇒ 2 cos(-2A)/1 - 2 sin(-2A)/2.
⇒ 4 cos(-2A)/1 - 2 sin(-2A).
⇒ 4 cos(2A)/1 - 2 sin(2A).
Hence, option [B] is correct answer.
MORE INFORMATION.
Fundamental trigonometric identities.
(1) = sin²θ + cos²θ = 1.
(2) = 1 + tan²θ = sec²θ.
(3) = 1 + cot²θ = cosec²θ.