Math, asked by oshadavishal392, 4 months ago

cot 2 theta + 3 cos theta =0 find theta​

Answers

Answered by Anonymous
5

 { \cos }^{2} θ\:  + 3 \: cosθ+ 3 = 0

 \frac{ {cos}^{2}θ}{ {sin}^{2}θ}  +  \frac{3}{sinθ}  + 3 = 0

 \frac{cos^{2}θ\: + 3 \: sin θ + 3 {sin}^{2}θ}{sin^{2}θ}  = 0

 {cos}^{2} θ + 3 {sin}^{2} θ + 3sinθ

1 + 2 {sin}^{2} θ + 3sinθ = 0

Put sinθ = x in the above equation we get

 {2x}^{2}  + 3x + 1 = 0

Solution of above polynomial is given by:-

x =  \frac{ - 3 +  \sqrt{ {3}^{2}  - 4 \times 2  \times 1} }{ {2}^{2} }

x =  \frac{ - 3 +  \sqrt{9 - 8} }{4}

x =  \frac{ - 3 +  \sqrt{1} }{4}

x =   \frac{ - 3 + 1}{4}

Hence,

x =  - 1 \: or \: x =  -  \frac{1}{2}

Hence,

sinθ =  - 1 \: or \: sinθ =  -  \frac{1}{2}

 > θ =  \frac{(4n \ + 3)\pi}{2}  \: or \: θ =  \frac{(12n + 7)\pi}{6}  =

 \frac{(12n + 11)\pi}{6}

Where n = 0,1,2,3,...

itzshinde

Similar questions