cot^2A/(cosecA+1)^2=1-sinA/1+sinA
Answers
Answered by
49
R.H.S
= 1-sinA/1+sinA × 1+sinA/1+sinA
= 1-sin^2A/(1+sinA)
[1-sinA^2=cos^2A]
= cos^2A/(1+sinA)^2
Dividing N & D by sin^2A
= cos^2A/sin^2A/(1+sinA)^2/sin^2A
= cot^2A/(1+sinA/sinA)^2
[cos^2A/sin^2A=cot^2A]
=cot^2A/(1/sinA+sinA/sinA)^2
=cot^2A/(cosecA+1)^2
=L.H.S
= 1-sinA/1+sinA × 1+sinA/1+sinA
= 1-sin^2A/(1+sinA)
[1-sinA^2=cos^2A]
= cos^2A/(1+sinA)^2
Dividing N & D by sin^2A
= cos^2A/sin^2A/(1+sinA)^2/sin^2A
= cot^2A/(1+sinA/sinA)^2
[cos^2A/sin^2A=cot^2A]
=cot^2A/(1/sinA+sinA/sinA)^2
=cot^2A/(cosecA+1)^2
=L.H.S
Answered by
47
Refer to pic above
HOPE IT HELPS YOU !
Attachments:
Similar questions