Math, asked by haisesaski, 4 months ago

cot^2theta (sectheta - 1)/ 1 + sintheta + sec^2 theta ( sin theta - 1) / 1 + sec theta = 0​

Answers

Answered by TheBrainliestUser
4

Solution:

Q: cot²θ (sec θ - 1)/(1 + sin θ) + sec²θ (sin θ - 1)/(1 + sec θ) = 0

Considering L.H.S:

= cot²θ (sec θ - 1)/(1 + sin θ) + sec²θ (sin θ - 1)/(1 + sec θ)

  • Taking minus common,

= cot²θ (sec θ - 1)/(1 + sin θ) - sec²θ (1 - sin θ)/(sec θ + 1)

= cot²θ (sec θ - 1)(sec θ + 1)/(1 + sin θ)(sec θ + 1) - sec²θ (1 - sin θ)(sec θ - 1)/(sec θ + 1)(sec θ - 1)

= cot²θ (sec²θ - 1)/(1 + sin θ)(sec θ + 1) - sec²θ (1 - sin θ)(sec θ - 1)/(sec²θ - 1)

  • We know: sec²θ - 1 = tan²θ

= cot²θ • tan²θ/(1 + sin θ)(sec θ + 1) - sec²θ (1 - sin θ)(sec θ - 1)/tan²θ

  • We know: cot²θ • tan²θ = 1
  • sec²θ/tan²θ = cosec²θ

= 1/(1 + sin θ)(sec θ + 1) - cosec²θ(1 - sin θ)(sec θ - 1)/1

  • Taking (1 + sin θ)(sec θ + 1) as L.C.M,

= {1 - cosec²θ(1 - sin θ)(sec θ - 1)•(1 + sin θ)(sec θ + 1)}/(1 + sin θ)(sec θ + 1)

= {1 - cosec²θ(1 - sin²θ)(sec²θ - 1)}/(1 + sin θ)(sec θ + 1)

  • We know: 1 - sin²θ = cos²θ
  • sec²θ - 1 = tan²θ

= {1 - cosec²θ•cos²θ•tan²θ}/(1 + sin θ)(sec θ + 1)

  • Here: cosec²θ•cos²θ•tan²θ = 1

= {1 - 1}/(1 + sin θ)(sec θ + 1)

= 0/(1 + sin θ)(sec θ + 1)

= 0

= R.H.S

Hence, Proved.

Answered by mathdude500
2

Prove that :-

 \tt \: \dfrac{ {cot}^{2} \theta \: (sec\theta \:  - 1) }{1 + sin\theta \: }  + \dfrac{ {sec}^{2}\theta \: (sin\theta \:  - 1) }{sec\theta \:   +  1}

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\Large{\bold{\pink{\underline{Formula \:  Used \::}}}}  \end{gathered}

1.  \: \boxed{ \pink{ \rm \:1 -  {cos}^{2}\theta \:  =  {sin}^{2}  \theta \:  }}

2.  \: \boxed{ \pink{ \rm \:  {sec}^{2} \theta \:  - 1 =  {tan}^{2}\theta \:  }}

3.  \: \boxed{ \pink{ \rm \:cot\theta \:  \times tan\theta \:  = 1 }}

4.  \: \boxed{ \pink{ \rm \: \dfrac{1}{cos\theta \: } \:  =  \: sec\theta \:  }}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

Consider

 \rm :  \implies \:  \dfrac{ {cot}^{2} \theta \: (sec\theta \:  - 1) }{1 + sin\theta \: }

On rationalizing the numerator and denominator, we get

 \rm :  \implies \:  \dfrac{ {cot}^{2} \theta \: (sec\theta \:  - 1) }{1 + sin\theta \: }  \times \dfrac{sec\theta \:  + 1}{1 - sin\theta \: }  \times \dfrac{1 - sin\theta \: }{sec\theta \:   +  1}

 \rm :  \implies \:  \dfrac{ {cot}^{2} \theta \: ( {sec}^{2} \theta \:  - 1) }{1  -  {sin}^{2} \theta \: }    \times \dfrac{1 - sin\theta \: }{sec\theta \:   +  1}

 \rm :  \implies \: \dfrac{ {cot}^{2} \theta \:  \times   {tan}^{2} \theta \: }{ {cos}^{2}\theta \:  }  \times \dfrac{1 - sin\theta \: }{sec\theta \:   +  1}

 \rm :  \implies \: \dfrac{1}{ {cos}^{2} \theta \: }  \times \dfrac{1 - sin\theta \: }{sec\theta \:   +  1}

 \tt :  \implies \:  {sec}^{2} \theta \:  \times \dfrac{1 - sin\theta \: }{sec\theta \:   +  1}

\rm :  \implies \:  - \:  \dfrac{ {sec}^{2}\theta \: (sin\theta \:  - 1) }{sec\theta \:  + 1}

\boxed{ \pink{ \bf \: Hence,  \:  \dfrac{ {cot}^{2} \theta \: (sec\theta \:  - 1) }{1 + sin\theta \: }  =  \:   - \:  \dfrac{ {sec}^{2}\theta \: (sin\theta \:  - 1) }{sec\theta \:  + 1}  }}

On transposition, we get

 \rm :  \implies \:  \dfrac{ {cot}^{2} \theta \: (sec\theta \:  - 1) }{1 + sin\theta \: }  \:  +  \: \dfrac{ {sec}^{2}\theta \: (sin\theta \:  - 1) }{sec\theta \:   +  1}  = 0

\large{\boxed{\boxed{\bf{Hence, Proved}}}}

\large \red{\bf \:  ⟼ Explore \:  \:  more } 

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions