cot^2theta (sectheta - 1)/ 1 + sintheta + sec^2 theta ( sin theta - 1) / 1 + sec theta = 0
Answers
Solution:
Q: cot²θ (sec θ - 1)/(1 + sin θ) + sec²θ (sin θ - 1)/(1 + sec θ) = 0
Considering L.H.S:
= cot²θ (sec θ - 1)/(1 + sin θ) + sec²θ (sin θ - 1)/(1 + sec θ)
- Taking minus common,
= cot²θ (sec θ - 1)/(1 + sin θ) - sec²θ (1 - sin θ)/(sec θ + 1)
= cot²θ (sec θ - 1)(sec θ + 1)/(1 + sin θ)(sec θ + 1) - sec²θ (1 - sin θ)(sec θ - 1)/(sec θ + 1)(sec θ - 1)
= cot²θ (sec²θ - 1)/(1 + sin θ)(sec θ + 1) - sec²θ (1 - sin θ)(sec θ - 1)/(sec²θ - 1)
- We know: sec²θ - 1 = tan²θ
= cot²θ • tan²θ/(1 + sin θ)(sec θ + 1) - sec²θ (1 - sin θ)(sec θ - 1)/tan²θ
- We know: cot²θ • tan²θ = 1
- sec²θ/tan²θ = cosec²θ
= 1/(1 + sin θ)(sec θ + 1) - cosec²θ(1 - sin θ)(sec θ - 1)/1
- Taking (1 + sin θ)(sec θ + 1) as L.C.M,
= {1 - cosec²θ(1 - sin θ)(sec θ - 1)•(1 + sin θ)(sec θ + 1)}/(1 + sin θ)(sec θ + 1)
= {1 - cosec²θ(1 - sin²θ)(sec²θ - 1)}/(1 + sin θ)(sec θ + 1)
- We know: 1 - sin²θ = cos²θ
- sec²θ - 1 = tan²θ
= {1 - cosec²θ•cos²θ•tan²θ}/(1 + sin θ)(sec θ + 1)
- Here: cosec²θ•cos²θ•tan²θ = 1
= {1 - 1}/(1 + sin θ)(sec θ + 1)
= 0/(1 + sin θ)(sec θ + 1)
= 0
= R.H.S
Hence, Proved.
Prove that :-
─━─━─━─━─━─━─━─━─━─━─━─━─
─━─━─━─━─━─━─━─━─━─━─━─━─
Consider
On rationalizing the numerator and denominator, we get
On transposition, we get
Additional Information:-
Relationship between sides and T ratios
sin θ = Opposite Side/Hypotenuse
cos θ = Adjacent Side/Hypotenuse
tan θ = Opposite Side/Adjacent Side
sec θ = Hypotenuse/Adjacent Side
cosec θ = Hypotenuse/Opposite Side
cot θ = Adjacent Side/Opposite Side
Reciprocal Identities
cosec θ = 1/sin θ
sec θ = 1/cos θ
cot θ = 1/tan θ
sin θ = 1/cosec θ
cos θ = 1/sec θ
tan θ = 1/cot θ
Co-function Identities
sin (90°−x) = cos x
cos (90°−x) = sin x
tan (90°−x) = cot x
cot (90°−x) = tan x
sec (90°−x) = cosec x
cosec (90°−x) = sec x
Fundamental Trigonometric Identities
sin²θ + cos²θ = 1
sec²θ - tan²θ = 1
cosec²θ - cot²θ = 1