Math, asked by kruti7821, 5 months ago

Cot^3*sin^3/(cos+sin)^2+tan^3*cos^3/(cos+sin)^2

Answers

Answered by thaneesh35
0

Answer:

prove that cot3 sin3/(cos+sin)2 +tan3 cos3/(cos-sin)2 =sec cosec-1/cosec+sec

Answered by Anonymous
1

\sf  \frac{cot^3 \theta sin^3 \theta} {(cos \theta+sin \theta)^2} +\frac{tan^3 \theta cos^3 \theta} {(cos \theta+sin \theta)^2} \\\\\sf </p><p>=\frac{cot^3 \theta sin^3 \theta+tan^3 \theta cos^3 \theta}{(cos \theta+sin \theta)^2} \\\\\sf </p><p>=\frac{\frac{cos^3 \theta}{sin^3  \theta} \: x \: sin^3 \theta+\frac{sin^3  \theta} {cos^3  \theta} \: x \: cos^3 \theta}{(cos \theta+sin \theta)^2} \\\\\sf </p><p>=\frac{\frac{cos^3 \theta}{\cancel{sin^3  \theta}} \: x \: \cancel{sin^3 \theta}+\frac{sin^3  \theta} {\cancel {cos^3  \theta}} \: x \: \cancel{cos^3 \theta}}{(cos \theta+sin \theta)^2} \\\\\sf </p><p>=\frac{cos^3 \theta + sin^3  \theta} {(cos \theta+sin \theta)^2} \\\\\sf </p><p>=\frac{(cos \theta+sin  \theta)(cos^2 \theta+sin^2 \theta-cos \theta sin \theta)}{(cos  \theta+sin  \theta) ^2} \\\\\sf </p><p>=\frac{1-cos \theta sin \theta} {cos  \theta+ sin  \theta} </p><p>

Similar questions