Math, asked by meghana2007ammu, 8 hours ago

cot ³ theta sin³ theta /( cos theta + sin theta)² + tan³ theta cos³ theta /( cos theta + sin theta ²) ??​

Answers

Answered by LaeeqAhmed
2

  \sf\frac{ \cot ³  \theta \:   \sin³ \theta}{(  \cos  \theta +  \sin  \theta)² }  +  \frac{ \tan³  \theta  \:  \cos³  \theta}{(  \cos  \theta +  \sin  \theta )²}

 \implies  \sf\frac{ (\cot   \theta  . \sin \theta)³ + (\tan  \theta  . \cos\theta)³ }{(  \cos  \theta +  \sin  \theta)² }

 \implies  \sf\frac{ ( \frac{\cos  \theta}{\sin   \theta}   . \sin \theta)³ + ( \frac{\sin   \theta}{\cos  \theta}   . \cos\theta)³ }{ (  \cos  \theta +  \sin  \theta)²}

 \implies  \sf\frac{  \cos³   \theta  +  \sin³  \theta}{(  \cos  \theta +  \sin  \theta)² }

 \implies  \frac{( \cos \theta +  \sin \theta)(  \sin^{2} \theta +  \cos^{2} \theta -  \sin \theta \cos \theta) }{ {( \cos \theta +  \sin \theta)}^{2} }

 \orange{\therefore  \frac{  1-  \sin \theta \cos \theta }{  \cos \theta +  \sin \theta} }

HOPE IT HELPS!!

Answered by OtakuSama
14

 \\   \large{\underline{ \underline{ \sf{ \pmb{Question \ratio - }}}}}

 \\  \rightarrow{ \tt{    \frac{{\cot }^{3} \theta \: { \sin}^{3}  \theta }{( \cos\theta  +  \sin\theta) {}^{2} }  + \frac{  { \tan}^{3} \theta \:  {\cos}^{3}  \theta }{( \cos\theta  +  \sin\theta) {}^{2}}  = }}

 \\   \large{\underline{ \underline{ \sf{ \pmb{ Required \:  Answer\ratio - }}}}}

  \\\bold{\dfrac{{\cot }^{3} \theta \: { \sin}^{3}  \theta }{( \cos\theta  +  \sin\theta) {}^{2} }  + \dfrac{  { \tan}^{3} \theta \:  {\cos}^{3}  \theta }{( \cos\theta  +  \sin\theta) {}^{2}}}\\

  \\  \tt { \rightarrow{    \dfrac{{cot }^{3} \theta \: { sin}^{3}  \theta  + { tan}^{3} \theta \:  {cos}^{3}  \theta }{( cos\theta  +  sin\theta) {}^{2} }}}\\

We know that:-

  • cotθ = cosθ/sinθ
  • tanθ = sinθ/cosθ

Therefore,

 \\ \\  \tt { \rightarrow{    \dfrac{ \dfrac{cos {}^{3} \theta }{ \cancel{sin {}^{3} \theta} }   \times  {   \cancel{sin}^{3}  \theta}  +  \dfrac{{ sin}^{3} \theta}{ \cancel{{ cos}^{3} \theta}}   \times  \cancel{ {cos}^{3}  \theta }}{( cos\theta  +  sin\theta) {}^{2} }}}\\

\\  \\  \tt { \rightarrow{    \dfrac{ {cos}^{3} \theta +  {sin}^{3}  \theta }{( cos\theta  +  sin\theta) {}^{2} }}}\\\\

Again,

  • a³ + b³ = (a+b)³ - 3ab(a+b)

Therefore,

 \\\\  \tt { \rightarrow{    \dfrac{(cos \theta + sin \theta) {}^{3}   - 3cos \theta sin \theta(cos \theta + sin \theta)}{( cos\theta  +  sin\theta) {}^{2} }}}\\\\

  • Taking (cosθ + sinθ) common,

\\\\  \tt { \rightarrow{    \dfrac{ \cancel{(cos \theta + sin \theta)} \{{(cos \theta + sin \theta)}^{2}   - 3cos \theta sin \theta \}}{ \cancel{( cos\theta  +  sin\theta)  }(cos \theta + sin \theta)}}}\\

\\  \tt { \rightarrow{ \dfrac{( {cos  \theta + sin  \theta)}^{2} - 3cos \theta sin \theta  }{cos \theta+ sin \theta}}}\\\\

  • Applying (a+b)² = a² + b² + 2ab formula:-

\\\\  \tt { \rightarrow{ \dfrac{ {cos {}^{2}   \theta + sin {}^{2}   \theta} + 2cos \theta sin \theta  - 3cos \theta sin \theta  }{cos \theta +sin \theta}}}\\\\

  • Applying cos²θ + sin²θ = 1:-

\\\\  \tt { \rightarrow{ \dfrac{ 1 -  cos \theta sin \theta    }{cos \theta+ sin \theta}}}\\\\

 \\\\  \sf{ \therefore{Hence \: the \: answer \: is \: } \tt { \rightarrow{ \red{ \dfrac{ 1 -  cos \theta sin \theta    }{cos \theta +sin \theta}}}}}\\\\

Similar questions