Math, asked by ashishkumarjack1, 1 year ago

(cot 30/sin 45)+((1-sin 45)/cot 30)

Answers

Answered by Anonymous
4

Step-by-step explanation:

(cot 30/sin 45)+((1-sin 45)/cot 30)

hey buddy

it is simple trigo angles so we can directly put values of angles

(√3 /1/√2) + (1-1/√2)/√3

√6 +1- √3/√2

Answered by pinquancaro
1

\frac{\cot 30}{\sin 45}+\frac{1-\sin 45}{\cot 30}=\frac{5+\sqrt2}{\sqrt6}

Step-by-step explanation:

Given : Expression \frac{\sec^2 60-\tan^2 60}{\sin^2 30+\cos^2 30}

To find : Solve the expression ?

Solution :

Expression \frac{\cot 30}{\sin 45}+\frac{1-\sin 45}{\cot 30}

Using trigonometric values,

\sin 45=\frac{1}{\sqrt2}

\cot 30=\sqrt3

Substitute the values,

=\frac{\sqrt 3}{\frac{1}{\sqrt2}}+\frac{1-\frac{1}{\sqrt2}}{\sqrt 3}

=\sqrt 3\times \sqrt2+\frac{\frac{\sqrt2-1}{\sqrt2}}{\sqrt 3}

=\sqrt 6+\frac{\sqrt2-1}{\sqrt6}

=\frac{6+\sqrt2-1}{\sqrt6}

=\frac{5+\sqrt2}{\sqrt6}

Therefore, \frac{\cot 30}{\sin 45}+\frac{1-\sin 45}{\cot 30}=\frac{5+\sqrt2}{\sqrt6}

#Learn more

Tan(45+A)×tan(45-A)​

https://brainly.in/question/14069123

Similar questions