Math, asked by shaikamzad2004, 1 month ago

Cot (45⁰ + theta) - tan (45⁰ - theta)=what the answer ​

Answers

Answered by ajr111
6

Answer:

0

Step-by-step explanation:

Given :

Cot (45⁰ + theta) - tan (45⁰ - theta)

To find :

The value of the given expression

Solution :

We know that,

\longmapsto \mathrm {cot(45^{\circ} + \theta) = \dfrac{ cotx - 1}{cotx + 1}  = \dfrac{cosx - sinx}{cosx + sinx}}

\longmapsto \mathrm {tan(45^{\circ} - \theta) = \dfrac{ 1 - tanx}{1 + tanx}  = \dfrac{cosx - sinx}{cosx + sinx}}

As these both values are equal they cancel out to give 0

\implies \mathrm {\bcancel{\dfrac{cosx - sinx}{cosx + sinx}} - \bcancel{\dfrac{cosx - sinx}{cosx + sinx}}}

\implies \huge {\texttt{\underline{\underline{0}}}}

Extra information

\longmapsto \mathrm {cotx -tanx }

We know that,

\boxed{\mathrm {cotx = \dfrac{cosx}{sinx} \ and \ tanx = \dfrac{sinx}{cosx}}}

Substituting in the above equation, we get,

\implies \mathrm{ \dfrac{cosx}{sinx} - \dfrac{sinx}{cosx}  }

\implies \mathrm {\dfrac{cos^2x - sin^2x}{sinx.cosx} }

Multiply 2 with numerator and denominator, we get,

\implies \mathrm {\dfrac{2(cos^2x - sin^2x)}{2sinx.cosx} }

We know that,

\boxed { \mathrm {{cos^2x - sin^2x  = cos2x \ and \ 2sinx.cosx  =sin2x} }}

So,

\implies \mathrm {\dfrac{2cos2x }{sin2x} }

\implies \mathrm {2cot2x }

So,

\boxed {\mathrm {cotx - tanx = 2cot2x}}

Hope it helps!!

Similar questions