Math, asked by thangamba8307, 10 months ago

Cot 565°- tan 205°/ tan 245° - cot 295° = a cos² 25° + b, then find the value of a+b

Answers

Answered by amitnrw
0

Given :  (Cot 565°- tan 205°)/ (tan 245° - cot 295°) = a cos² 25° + b

To find : Value of a & b

Solution:

(Cot 565°- tan 205°)/ (tan 245° - cot 295°) = a cos² 25° + b

LHS

= (Cot 565°- tan 205°)/ (tan 245° - cot 295°)

565° = 360° + 205°

= (Cot 205°- tan 205°)/ (tan 245° - cot 295°)

= (Cot (180 + 25°) -  tan(180 +  25°)/ (tan (180 + 65°) - cot(360 - 65°))

= (Cot  25°  -  tan 25°) / (tan 65°  - (-cot(65°) )

= (Cot  25°  -  tan 25°) / (tan 65°  + Cot65° )

=(Cot  25°  -  tan 25°) /(Cot25°  + tan25° )

=  (Cos25°/sin25°  -  Sin25°/Cos25°) / (Cos25°/sin25°  +  Sin25°/Cos25°) )

=  (Cos ²25° - Sin ²25°) /( Cos ²25° +  Sin ²25°)

= Cos ²25° - Sin ²25°

RHS =  a cos² 25° + b  

a = 1   ,  b = - Sin ²25°

Learn more:

If sin θ + cos θ = 2 , then evaluate : tan θ + cot θ - Brainly.in

https://brainly.in/question/7871635

sin a cos b + cos a sin b

https://brainly.in/question/7852027

Find the value of sin 750 cos 300° + cos 1470" sin (-1020)​ - Brainly.in

https://brainly.in/question/15890620

Similar questions