Math, asked by yadav4880, 1 year ago

Cot 60 degree minus Cos 45 degree

Answers

Answered by MaheswariS
0

\underline{\textbf{Given:}}

\mathsf{cot\,60^\circ-cos\,45^\circ}

\underline{\textbf{To find:}}

\textsf{The value of}\;\mathsf{cot\,60^\circ-cos\,45^\circ}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{cot\,60^\circ-cos\,45^\circ}

\textsf{This can be written as}

\mathsf{=\dfrac{1}{tan\,60^\circ}-cos\,45^\circ}

\mathsf{=\dfrac{1}{\sqrt3}-\dfrac{1}{\sqrt2}}

\mathsf{=\dfrac{\sqrt2-\sqrt3}{\sqrt3\sqrt2}}

\mathsf{=\dfrac{\sqrt2-\sqrt3}{\sqrt6}}

\implies\boxed{\bf\,cot\,60^\circ-cos\,45^\circ=\dfrac{\sqrt2-\sqrt3}{\sqrt6}}

\textbf{Standard trigonometric table:}

\left\begin{array}{|c|c|c|c|c|c|}\cline{1-6}&0^{\circ}&30^{\circ}&45^{\circ}&60^{\circ}&90^{\circ}\\\cline{1-6}\bf\,sin\theta&0&\frac{1}{2}&\frac{1}{\sqrt2}&\frac{\sqrt3}{2}&1\\\cline{1-6}\bf\,cos\theta&1&\frac{\sqrt3}{2}&\frac{1}{\sqrt2}&\frac{1}{2}&0\\\cline{1-6}\bf\,tan\theta&0&\frac{1}{\sqrt3}&1&\sqrt3&\infty\\\cline{1-6}\end{array}\right

Answered by NITESH761
0

Step-by-step explanation:

\sf We \: have,

\sf \cot 60^{\circ} - \cos 45^{\circ}

\sf : \implies \bf{\dfrac{1}{\sqrt{3}}-\dfrac{1}{\sqrt{2}}}

\sf : \implies \bf{\dfrac{\sqrt{2}-\sqrt{3}}{\sqrt{3}\sqrt{2}}}

\sf : \implies\underline{\boxed{\bf{\dfrac{\sqrt{2}-\sqrt{3}}{\sqrt{6}}}}}

Similar questions