Math, asked by bhavyasai047, 19 days ago

cot 7 1/2 degrees - cot 37 1/2 degrees - cot 52 1/2 degrees + cot 82 1/2 degrees?​

Answers

Answered by rishabhchaurasiya707
0

Answer:

⟼cot7

2

1

°−cot37

2

1

°−cot52

2

1

°+cot82

2

1

°

Let we consider,

\red{\rm :\longmapsto\:cot7\dfrac{1}{2}\degree + cot82\dfrac{1}{2}\degree}:⟼cot7

2

1

°+cot82

2

1

°

can be rewritten as

\rm \: = \: \: cot7\dfrac{1}{2}\degree + cot \bigg(90\degree - 7\dfrac{1}{2}\degree \bigg)=cot7

2

1

°+cot(90°−7

2

1

°)

We know that

\boxed{ \rm{ cot(90\degree - x) = tanx}}

cot(90°−x)=tanx

So, using this we get

\rm \: = \: \: cot7\dfrac{1}{2}\degree + tan7\dfrac{1}{2}\degree=cot7

2

1

°+tan7

2

1

°

\rm \: = \: \: cot\dfrac{15}{2}\degree + tan\dfrac{15}{2}\degree=cot

2

15

°+tan

2

15

°

Let assume that

\red{\boxed{ \rm{ \dfrac{15}{2}\degree = x}}}

2

15

°=x

\rm \: = \: \: cotx + tanx=cotx+tanx

\rm \: = \: \: \dfrac{cosx}{sinx} + \dfrac{sinx}{cosx}=

sinx

cosx

+

cosx

sinx

\rm \: = \: \: \dfrac{ {cos}^{2}x + {sin}^{2} x}{sinxcosx}=

sinxcosx

cos

2

x+sin

2

x

\rm \: = \: \: \dfrac{1}{sinxcosx}=

sinxcosx

1

\rm \: = \: \: \dfrac{2}{2sinxcosx}=

2sinxcosx

2

\rm \: = \: \: \dfrac{2}{sin2x}=

sin2x

2

\rm \: = \: \: \dfrac{2}{sin15\degree }=

sin15°

2

\rm \: = \: \: \dfrac{2}{sin(45\degree - 30\degree ) }=

sin(45°−30°)

2

\rm \: = \: \: \dfrac{2}{sin45\degree cos30\degree - sin30\degree cos45\degree }=

sin45°cos30°−sin30°cos45°

2

\rm \: = \: \: \dfrac{2}{\dfrac{1}{ \sqrt{2} } \times \dfrac{ \sqrt{3} }{2} - \dfrac{1}{2} \times \dfrac{ 1 }{2} }=

2

1

×

2

3

2

1

×

2

1

2

\rm \: = \: \: \dfrac{4 \sqrt{2} }{ \sqrt{3} - 1 }=

3

−1

4

2

So, we get

\boxed{ \bf{ cot7\dfrac{1}{2}\degree + cot87\dfrac{1}{2}\degree = \dfrac{4 \sqrt{2} }{ \sqrt{3} - 1 } }}

cot7

2

1

°+cot87

2

1

°=

3

−1

4

2

Now, Consider,

\red{\rm :\longmapsto\:cot37\dfrac{1}{2}\degree + cot52\dfrac{1}{2}\degree}:⟼cot37

2

1

°+cot52

2

1

°

can be rewritten as

\rm \: = \: \: cot37\dfrac{1}{2}\degree + cot \bigg(90\degree - 37\dfrac{1}{2}\degree \bigg)=cot37

2

1

°+cot(90°−37

2

1

°)

Now, we know that

\boxed{ \rm{ cot(90\degree - x) = tanx}}

cot(90°−x)=tanx

So, using this

\rm \: = \: \: cot37\dfrac{1}{2}\degree + tan37\dfrac{1}{2}\degree=cot37

2

1

°+tan37

2

1

°

\rm \: = \: \: cot\dfrac{75}{2}\degree + tan\dfrac{75}{2}\degree=cot

2

75

°+tan

2

75

°

Let we assume that

\red{\boxed{ \rm{ \dfrac{75}{2}\degree = x}}}

2

75

°=x

So, we get

\rm \: = \: \: cotx + tanx=cotx+tanx

\rm \: = \: \: \dfrac{cosx}{sinx} + \dfrac{sinx}{cosx}=

sinx

cosx

+

cosx

sinx

\rm \: = \: \: \dfrac{ {cos}^{2}x + {sin}^{2} x}{sinxcosx}=

sinxcosx

cos

2

x+sin

2

x

\rm \: = \: \: \dfrac{1}{sinxcosx}=

sinxcosx

1

\rm \: = \: \: \dfrac{2}{2sinxcosx}=

2sinxcosx

2

\rm \: = \: \: \dfrac{2}{sin2x}=

sin2x

2

\rm \: = \: \: \dfrac{2}{sin75\degree }=

sin75°

2

\rm \: = \: \: \dfrac{2}{sin(45\degree + 30\degree )}=

sin(45°+30°)

2

\rm \: = \: \: \dfrac{2}{sin45\degree cos30\degree + sin30\degree cos45\degree }=

sin45°cos30°+sin30°cos45°

2

\rm \: = \: \: \dfrac{2}{\dfrac{1}{ \sqrt{2} } \times \dfrac{ \sqrt{3} }{2} + \dfrac{1}{2} \times \dfrac{ 1 }{2} }=

2

1

×

2

3

+

2

1

×

2

1

2

\rm \: = \: \: \dfrac{4 \sqrt{2} }{ \sqrt{3} + 1 }=

3

+1

4

2

Hence, we get

\boxed{ \bf{ cot37\dfrac{1}{2}\degree + cot52\dfrac{1}{2}\degree = \dfrac{4 \sqrt{2} }{ \sqrt{3} + 1 } }}

cot37

2

1

°+cot52

2

1

°=

3

+1

4

2

Similar questions