cot (90°-)tant-cosec (90°-6)sece cos2 (50° +6) + cos2 (40°-0)
29. Simplify:
+
sin12°cos150sec78°cosec750 tan15º tan370 tan530 tan 750
Answers
Answered by
0
Answer:
Cot(90° - θ).Sin(90°-θ)/Sinθ + Cot40°/Tan50° - (Cos²20° + Cos²70°) = 1
Step-by-step explanation:
evaluate
cot[90-theta].sin[90-theta] / sin theta+cot 40/tan 50 - [cos square 20 +cos square 70]
Cot(90° - θ).Sin(90°-θ)/Sinθ + Cot40°/Tan50° - (Cos²20° + Cos²70°)
Cot(90° - θ) = Cos(90°-θ)/Sin(90°-θ)
=> Cot(90° - θ).Sin(90°-θ) = (Cos(90°-θ)/Sin(90°-θ)) * Sin(90°-θ)
=> Cot(90° - θ).Sin(90°-θ) = Cos(90°-θ)
Cot(90 - θ) = Tanθ => Cot40° = Cot(90° - 50°) = tan50°
Cos(90-θ) = Sinθ => Cos20° = Cos(90° - 70°) = Sin(70°)
Using all these
= Sinθ/Sinθ + tan50°/Tan50° - (Sin²70° + Cos²70°)
= 1 + 1 - 1 ( using sin²θ + Cos²θ = 1)
= 1
Cot(90° - θ).Sin(90°-θ)/Sinθ + Cot40°/Tan50° - (Cos²20° + Cos²70°) = 1
Similar questions