Math, asked by DManish23, 9 months ago

cot A-1/2-sec^2 A=cot A/1+tan A
Prove this. ​

Attachments:

Answers

Answered by DivyanshuRaj21
2

Answer:

Lol. but this can help u find answer

If it is helpful, Mark it as Brainliest

Attachments:
Answered by TheValkyrie
6

Answer:

\Large{\underline{\underline{\bf{Given:}}}}

\dfrac{cot\:A-1}{2-sec^{2}\:A } =\dfrac{cot\:A}{1+tan\:A}

\Large{\underline{\underline{\bf{To\:Prove:}}}}

  • LHS = RHS

\Large{\underline{\underline{\bf{Identities\:used:}}}}

→ (a + b) × (a - b) = a² - b²

→ cot A × tan A = 1

→ tan² A = sec² A - 1

\Large{\underline{\underline{\bf{Solution:}}}}

→ Consider the RHS

  \dfrac{cot\:A}{1+tan\:A}

→ Taking the conjugate of 1 + tan A and multiplying on both numerator and denominator.

  \dfrac{cot\:A}{1+tan\:A} \times \dfrac{1-tan\:A}{1-tan\:A}

=\dfrac{cot\:A-cot\:A\:tan\:A}{1-tan^{2}\:A }

=\dfrac{cot\:A-1}{1-(sec^{2}\:A-1) }

=\dfrac{cot\:A-1}{1+1-sec^{2}\:A }

=\dfrac{cot\:A-1}{2-sec^{2} \:A}

= LHS

→ Hence proved.

\Large{\underline{\underline{\bf{More\:Identities:}}}}

→ sin² A + cos² A = 1

→ cosec² A - cos² A = 1

→ sin A × cosec A = 1

→ cos A × sec A = 1

Similar questions