(cot A-1)/(2-sec² A)=cot A/(1+tanA)
Answers
Answered by
1
Answer:
We know,
⟹ sin²A + cos²A = 1 => tan²A + 1 = sec²A
1 - sec²A = -tan²A.
Hence Denominator of LHS:
⟹ 2 - sec²A = 1 + 1 - sec²A = 1 - tan²A
Numerator of LHS: cotA - 1 = (1/tanA) -1 = (1-tanA)/tanA
Hence LHS:
⟹ (cotA-1) / (2 - sec²A) = [ (1-tanA)/tanA] / 1 - tan²A
=(1-tanA) / [tanA (1+tanA)(1 - tanA)] = 1 / [tanA(1+tanA)]
= (1/tanA) * 1/(1+tanA)
=cotA / (1 + tanA)
= RHS
⟹ Hope it helps you :)
Similar questions