Math, asked by khushi6642, 10 hours ago

(cot A + 3 ) (3 cot A + 1 ) = 3 cosec²A + 10 cot A

Is this statement correct​

Answers

Answered by coctests999
0

Answer:

Yes, the statement is correct.

Step-by-step explanation:

( \frac{ \cos(a) }{ \sin(a) }  + 3)( 3 + \frac{ \cos(a) }{ \sin(a) }   + 1) = 3( \frac{1}{ \sin(a) } )^{2}  + 10 \frac{ \cos(a) }{ \sin(a) }

( \frac{ \cos(a) + 3 \sin(a)  \times 3 \cos(a) +  \sin(a)  }{ \sin(a)^{2} } ) = 3( \frac{1}{ \sin(a) } )^{2}  + 10 \frac{ \cos(a) }{ \sin(a) }

1

Remove parenthesis

( \frac{3 \cos(a)^{2}  +  \sin(a) \cos(a)  + 9 \sin(a)  }{ \cos(a)  + 3 \sin(a)^{2}  }  = 3( \frac{1}{ \sin(a) } )^{2}  + 10 \frac{ \cos(a) }{ \sin(a) }

 \frac{3 \cos(a) \sin(a) + 9 \cos(a) \sin(a)   }{ \sin(a)^{2}  }  = 3( \frac{1}{ \sin(a) } )^{2}  + 10 \frac{ \cos(a) }{ \sin(a) }

 \frac{3 + 10 \cos(a) \sin(a) }{ \sin( {a}^{2} ) }  = 3( \frac{1}{ \sin(a) } )^{2}  + 10 \frac{ \cos(a) }{ \sin(a) }

 \frac{3 + 5 \sin(2a) }{ \sin( {a}^{2} ) }  - ( \frac{3}{ \sin(a) } )^{2}   -  \frac{ 10\cos(a) }{ \sin(a) }  = 0

 \frac{3  + 5 \sin(2a) - 3 - 10 \sin(a \cos(a) )  }{ \sin{(a)}^{2}  }  = 0

{3  + 5 \sin(2a) - 3 - 10 \sin(a \cos(a) )  = 0

5 \sin(2a)  - 5 \sin(2a)  = 0

0 = 0

Similar questions
Math, 5 hours ago